1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2012/07/07)
#include "VertexCollapse.h"
#include "Wm5DistPoint3Segment3.h"
#include "Wm5Memory.h"
//----------------------------------------------------------------------------
VertexCollapse::VertexCollapse (int numVertices, Vector3f*& vertices,
bool closed, int*& indexMap, int& numEdges, int*& edges)
{
indexMap = new1<int>(numVertices);
if (closed)
{
numEdges = numVertices;
edges = new1<int>(2*numEdges);
if (numVertices == 3)
{
indexMap[0] = 0;
indexMap[1] = 1;
indexMap[2] = 3;
edges[0] = 0; edges[1] = 1;
edges[2] = 1; edges[3] = 2;
edges[4] = 2; edges[5] = 0;
return;
}
}
else
{
numEdges = numVertices - 1;
edges = new1<int>(2*numEdges);
if (numVertices == 2)
{
indexMap[0] = 0;
indexMap[1] = 1;
edges[0] = 0; edges[1] = 1;
return;
}
}
// Create the heap of weights.
mHeap = new0 MinHeap<int, float>(numVertices, 0, Mathf::MAX_REAL);
int qm1 = numVertices - 1;
if (closed)
{
int qm2 = numVertices - 2;
mHeap->Insert(0, GetWeight(qm1, 0, 1, vertices));
mHeap->Insert(qm1, GetWeight(qm2, qm1, 0, vertices));
}
else
{
mHeap->Insert(0, Mathf::MAX_REAL);
mHeap->Insert(qm1, Mathf::MAX_REAL);
}
for (int m = 0, z = 1, p = 2; z < qm1; ++m, ++z, ++p)
{
mHeap->Insert(z, GetWeight(m, z, p, vertices));
}
// Create the level of detail information for the polyline.
int* collapses = new1<int>(numVertices);
CollapseVertices(numVertices, collapses);
ComputeEdges(numVertices, closed, collapses, indexMap, numEdges, edges);
ReorderVertices(numVertices, vertices, collapses, numEdges, edges);
delete1(collapses);
}
//----------------------------------------------------------------------------
VertexCollapse::~VertexCollapse ()
{
delete0(mHeap);
}
//----------------------------------------------------------------------------
float VertexCollapse::GetWeight (int m, int z, int p, Vector3f* vertices)
{
Segment3f segment(vertices[m], vertices[p]);
if (segment.Extent > 0.0f)
{
float distance = DistPoint3Segment3f(vertices[z], segment).Get();
return 0.5f*distance/segment.Extent;
}
return Mathf::MAX_REAL;
}
//----------------------------------------------------------------------------
void VertexCollapse::CollapseVertices (int numVertices, int* collapses)
{
for (int i = numVertices - 1; i >= 0; --i)
{
float weight;
mHeap->Remove(collapses[i], weight);
}
}
//----------------------------------------------------------------------------
void VertexCollapse::ComputeEdges (int numVertices, bool closed,
int* collapses, int* indexMap, int numEdges, int* edges)
{
// Compute the edges (first to collapse is last in array). Do not
// collapse last line segment of open polyline. Do not collapse last
// triangle of closed polyline.
int i, vIndex, eIndex = 2*numEdges - 1;
if (closed)
{
for (i = numVertices - 1; i >= 0; --i)
{
vIndex = collapses[i];
edges[eIndex--] = (vIndex + 1) % numVertices;
edges[eIndex--] = vIndex;
}
}
else
{
for (i = numVertices - 1; i >= 2; --i)
{
vIndex = collapses[i];
edges[eIndex--] = vIndex + 1;
edges[eIndex--] = vIndex;
}
vIndex = collapses[0];
edges[0] = vIndex;
edges[1] = vIndex + 1;
}
// In the given edge order, find the index in the edge array that
// corresponds to a collapse vertex and save the index for the dynamic
// change in level of detail. This relies on the assumption that a
// vertex is shared by at most two edges.
eIndex = 2*numEdges - 1;
for (i = numVertices - 1; i >= 0; --i)
{
vIndex = collapses[i];
for (int e = 0; e < 2*numEdges; ++e)
{
if (vIndex == edges[e])
{
indexMap[i] = e;
edges[e] = edges[eIndex];
break;
}
}
eIndex -= 2;
if (closed)
{
if (eIndex == 5)
{
break;
}
}
else
{
if (eIndex == 1)
{
break;
}
}
}
// Restore the edge array to full level of detail.
if (closed)
{
for (i = 3; i < numVertices; ++i)
{
edges[indexMap[i]] = collapses[i];
}
}
else
{
for (i = 2; i < numVertices; ++i)
{
edges[indexMap[i]] = collapses[i];
}
}
}
//----------------------------------------------------------------------------
void VertexCollapse::ReorderVertices (int numVertices, Vector3f*& vertices,
int* collapses, int numEdges, int* edges)
{
int* permute = new1<int>(numVertices);
Vector3f* permutedVertex = new1<Vector3f>(numVertices);
int i;
for (i = 0; i < numVertices; ++i)
{
int vIndex = collapses[i];
permute[vIndex] = i;
permutedVertex[i] = vertices[vIndex];
}
for (i = 0; i < 2*numEdges; ++i)
{
edges[i] = permute[edges[i]];
}
delete1(permute);
delete1(vertices);
vertices = permutedVertex;
}
//----------------------------------------------------------------------------
|