File: Colliders.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-6
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 90,112 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 39
file content (194 lines) | stat: -rw-r--r-- 6,874 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.2.0 (2010/06/21)

#include "Colliders.h"

//----------------------------------------------------------------------------
Colliders::Colliders ()
{
    SetDerivativeTimeStep(1e-03f);
    SetPseudodistanceThreshold(1e-06f);
    SetMaxIterations(8);
    mContactTime = Mathf::MAX_REAL;
}
//----------------------------------------------------------------------------
Colliders::~Colliders ()
{
}
//----------------------------------------------------------------------------
void Colliders::SetDerivativeTimeStep (float timeStep)
{
    if (timeStep > 0.0f)
    {
        mDerivativeTimeStep = timeStep;
    }
    else
    {
        mDerivativeTimeStep = 1e-03f;
    }

    mInvDerivativeTimeStep = 0.5f/mDerivativeTimeStep;
}
//----------------------------------------------------------------------------
float Colliders::GetDerivativeTimeStep () const
{
    return mDerivativeTimeStep;
}
//----------------------------------------------------------------------------
void Colliders::SetPseudodistanceThreshold (float threshold)
{
    if (threshold >= 0.0f)
    {
        mPseudodistanceThreshold = threshold;
    }
}
//----------------------------------------------------------------------------
float Colliders::GetPseudodistanceThreshold () const
{
    return mPseudodistanceThreshold;
}
//----------------------------------------------------------------------------
void Colliders::SetMaxIterations (int maxIterations)
{
    if (maxIterations > 0)
    {
        mMaxIterations = maxIterations;
    }
}
//----------------------------------------------------------------------------
int Colliders::GetMaxIterations () const
{
    return mMaxIterations;
}
//----------------------------------------------------------------------------
Colliders::CollisionType Colliders::Test (float maxTime,
    const Vector3f& velocity0, const Vector3f& velocity1, float& contactTime)
{
    return Find(maxTime, velocity0, velocity1, contactTime);
}
//----------------------------------------------------------------------------
Colliders::CollisionType Colliders::Find (float maxTime,
    const Vector3f& velocity0, const Vector3f& velocity1, float& contactTime)
{
    float f0, fder0;
    CollisionType type = FastNoIntersection(maxTime, velocity0, velocity1,
        f0, fder0);

    if (type == SEPARATED)
    {
        contactTime = Mathf::MAX_REAL;
        return SEPARATED;
    }
    if (type == TOUCHING)
    {
        contactTime = 0.0f;
        return TOUCHING;
    }

    // Use Newtons method for root finding when the derivative is calculated
    // but Secant method when the derivative is estimated.
    float t0 = 0.0f;
    for (int i = 1; i <= mMaxIterations; ++i)
    {
        t0 -= f0/fder0;
        if (t0 > maxTime)
        {
            // The objects do not intersect during the specified time
            // interval.
            contactTime = Mathf::MAX_REAL;
            return TOUCHING;
        }
        f0 = Pseudodistance(t0, velocity0, velocity1);
        if (f0 <= mPseudodistanceThreshold)
        {
            contactTime = t0;
            ComputeContactInformation(TOUCHING, contactTime, velocity0,
                velocity1);
            return TOUCHING;
        }
        fder0 = PseudodistanceDerivative(t0, f0, velocity0, velocity1);
        if (fder0 >= 0.0f)
        {
            // The objects are moving apart.
            contactTime = Mathf::MAX_REAL;
            return SEPARATED;
        }
    }

    // Newtons method failed to converge, but we already tested earlier
    // whether the objects were moving apart or not intersecting during the
    // specified time interval.  To reach here, the number of iterations was
    // not large enough for the desired pseudodistance threshold.  Most
    // likely this occurs when the relative speed is very large and the time
    // step for the derivative estimation needs to be smaller.
    contactTime = t0;
    ComputeContactInformation(TOUCHING, contactTime, velocity0, velocity1);
    return TOUCHING;
}
//----------------------------------------------------------------------------
float Colliders::GetContactTime () const
{
    return mContactTime;
}
//----------------------------------------------------------------------------
float Colliders::PseudodistanceDerivative (float t0, float f0,
    const Vector3f& velocity0, const Vector3f& velocity1) const
{
    float t1 = t0 - mDerivativeTimeStep;
    float f1 = Pseudodistance(t1,velocity0,velocity1);
    float fder0 = (f0 - f1)*mInvDerivativeTimeStep;
    return fder0;
}
//----------------------------------------------------------------------------
Colliders::CollisionType Colliders::FastNoIntersection (float maxTime,
    const Vector3f& velocity0, const Vector3f& velocity1, float& f0,
    float& fder0)
{
    // Analyze the initial configuration of the objects.
    f0 = Pseudodistance(0.0f, velocity0, velocity1);
    fder0 = PseudodistanceDerivative(0.0f, f0, velocity0, velocity1);
    if (f0 <= -mPseudodistanceThreshold)
    {
        // Objects are (significantly) overlapping.
        ComputeContactInformation(OVERLAPPING, 0.0f, velocity0, velocity1);
        return (fder0 >= 0.0f ? SEPARATED : OVERLAPPING);
    }
    if (f0 <= mPseudodistanceThreshold)
    {
        // Objects are (nearly) in tangential contact.
        ComputeContactInformation(TOUCHING, 0.0f, velocity0, velocity1);
        return (fder0 >= 0.0f ? SEPARATED : TOUCHING);
    }

    // The objects are not currently in contact or overlapping.  If the
    // objects are moving apart or the relative velocity between them is
    // zero, they cannot intersect at a later time.
    if (fder0 >= 0.0f || velocity0 == velocity1)
    {
        return SEPARATED;
    }

    // Check if the objects are not intersecting, yet still moving toward each
    // other at maximum time.  If this is the case, the objects do not
    // intersect on the specified time interval.
    float f1 = Pseudodistance(maxTime, velocity0, velocity1);
    if (f1 > 0.0f)
    {
        // Compute or estimate the derivative F(tmax).
        float fder1 = PseudodistanceDerivative(maxTime, f1, velocity0,
            velocity1);
        if (fder1 < 0.0f)
        {
            // The objects are moving toward each other and do not intersect
            // during the specified time interval.
            return SEPARATED;
        }
    }
    return UNKNOWN;
}
//----------------------------------------------------------------------------