1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2013/03/01)
#include "Wm5GraphicsPCH.h"
#include "Wm5Triangles.h"
#include "Wm5Renderer.h"
using namespace Wm5;
WM5_IMPLEMENT_RTTI(Wm5, Visual, Triangles);
WM5_IMPLEMENT_STREAM(Triangles);
WM5_IMPLEMENT_ABSTRACT_FACTORY(Triangles);
WM5_IMPLEMENT_DEFAULT_NAMES(Visual, Triangles);
WM5_IMPLEMENT_DEFAULT_STREAM(Visual, Triangles);
//----------------------------------------------------------------------------
Triangles::Triangles (PrimitiveType type)
:
Visual(type)
{
}
//----------------------------------------------------------------------------
Triangles::Triangles (PrimitiveType type, VertexFormat* vformat,
VertexBuffer* vbuffer, IndexBuffer* ibuffer)
:
Visual(type, vformat, vbuffer, ibuffer)
{
}
//----------------------------------------------------------------------------
Triangles::~Triangles ()
{
}
//----------------------------------------------------------------------------
bool Triangles::GetModelTriangle (int i, APoint* modelTriangle) const
{
int v0, v1, v2;
if (GetTriangle(i, v0, v1, v2))
{
VertexBufferAccessor vba(mVFormat, mVBuffer);
modelTriangle[0] = vba.Position<Float3>(v0);
modelTriangle[1] = vba.Position<Float3>(v1);
modelTriangle[2] = vba.Position<Float3>(v2);
return true;
}
return false;
}
//----------------------------------------------------------------------------
bool Triangles::GetWorldTriangle (int i, APoint* worldTriangle) const
{
APoint modelTriangle[3];
if (GetModelTriangle(i, modelTriangle))
{
worldTriangle[0] = WorldTransform*modelTriangle[0];
worldTriangle[1] = WorldTransform*modelTriangle[1];
worldTriangle[2] = WorldTransform*modelTriangle[2];
return true;
}
return false;
}
//----------------------------------------------------------------------------
Float3 Triangles::GetPosition (int v) const
{
int index = mVFormat->GetIndex(VertexFormat::AU_POSITION);
if (index >= 0)
{
char* positions = mVBuffer->GetData() + mVFormat->GetOffset(index);
int stride = mVFormat->GetStride();
return *(Float3*)(positions + v*stride);
}
assertion(false, "GetPosition failed.\n");
return Float3(0.0f, 0.0f, 0.0f);
}
//----------------------------------------------------------------------------
void Triangles::UpdateModelSpace (UpdateType type)
{
UpdateModelBound();
if (type == GU_MODEL_BOUND_ONLY)
{
return;
}
VertexBufferAccessor vba(this);
if (vba.HasNormal())
{
UpdateModelNormals(vba);
}
if (type != GU_NORMALS)
{
if (vba.HasTangent() || vba.HasBinormal())
{
if (type == GU_USE_GEOMETRY)
{
UpdateModelTangentsUseGeometry(vba);
}
else
{
UpdateModelTangentsUseTCoords(vba);
}
}
}
Renderer::UpdateAll(mVBuffer);
}
//----------------------------------------------------------------------------
void Triangles::UpdateModelNormals (VertexBufferAccessor& vba)
{
// Calculate normals from vertices by weighted averages of facet planes
// that contain the vertices.
const int numVertices = vba.GetNumVertices();
int i;
for (i = 0; i < numVertices; ++i)
{
vba.Normal<Float3>(i) = Float3(0.0f, 0.0f, 0.0f);
}
const int numTriangles = GetNumTriangles();
for (i = 0; i < numTriangles; ++i)
{
// Get the vertex indices for the triangle.
int v0, v1, v2;
if (!GetTriangle(i, v0, v1, v2))
{
continue;
}
// Get the vertex positions.
APoint pos0 = vba.Position<Float3>(v0);
APoint pos1 = vba.Position<Float3>(v1);
APoint pos2 = vba.Position<Float3>(v2);
// Compute the triangle normal. The length of this normal is used in
// the weighted sum of normals.
AVector triEdge1 = pos1 - pos0;
AVector triEdge2 = pos2 - pos0;
AVector triNormal = triEdge1.Cross(triEdge2);
// Add the triangle normal to the vertices' normal sums.
vba.Normal<AVector>(v0) += triNormal;
vba.Normal<AVector>(v1) += triNormal;
vba.Normal<AVector>(v2) += triNormal;
}
// The vertex normals must be unit-length vectors.
for (i = 0; i < numVertices; ++i)
{
vba.Normal<AVector>(i).Normalize();
}
}
//----------------------------------------------------------------------------
void Triangles::UpdateModelTangentsUseGeometry (VertexBufferAccessor& vba)
{
// Compute the matrix of normal derivatives.
const int numVertices = vba.GetNumVertices();
HMatrix* dNormal = new1<HMatrix>(numVertices);
HMatrix* wwTrn = new1<HMatrix>(numVertices);
HMatrix* dwTrn = new1<HMatrix>(numVertices);
memset(wwTrn, 0, numVertices*sizeof(HMatrix));
memset(dwTrn, 0, numVertices*sizeof(HMatrix));
const int numTriangles = GetNumTriangles();
int i, row, col;
for (i = 0; i < numTriangles; ++i)
{
// Get the vertex indices for the triangle.
int v[3];
if (!GetTriangle(i, v[0], v[1], v[2]))
{
continue;
}
for (int j = 0; j < 3; j++)
{
// Get the vertex positions and normals.
int v0 = v[j];
int v1 = v[(j + 1) % 3];
int v2 = v[(j + 2) % 3];
APoint pos0 = vba.Position<Float3>(v0);
APoint pos1 = vba.Position<Float3>(v1);
APoint pos2 = vba.Position<Float3>(v2);
AVector nor0 = vba.Normal<Float3>(v0);
AVector nor1 = vba.Normal<Float3>(v1);
AVector nor2 = vba.Normal<Float3>(v2);
// Compute the edge from pos0 to pos1, project it to the tangent
// plane of the vertex, and compute the difference of adjacent
// normals.
AVector edge = pos1 - pos0;
AVector proj = edge - edge.Dot(nor0)*nor0;
AVector diff = nor1 - nor0;
for (row = 0; row < 3; ++row)
{
for (col = 0; col < 3; ++col)
{
wwTrn[v0][row][col] += proj[row]*proj[col];
dwTrn[v0][row][col] += diff[row]*proj[col];
}
}
// Compute the edge from pos0 to pos2, project it to the tangent
// plane of the vertex, and compute the difference of adjacent
// normals.
edge = pos2 - pos0;
proj = edge - edge.Dot(nor0)*nor0;
diff = nor2 - nor0;
for (row = 0; row < 3; ++row)
{
for (col = 0; col < 3; ++col)
{
wwTrn[v0][row][col] += proj[row]*proj[col];
dwTrn[v0][row][col] += diff[row]*proj[col];
}
}
}
}
// Add N*N^T to W*W^T for numerical stability. In theory 0*0^T is added
// to D*W^T, but of course no update is needed in the implementation.
// Compute the matrix of normal derivatives.
for (i = 0; i < numVertices; ++i)
{
AVector nor = vba.Normal<Float3>(i);
for (row = 0; row < 3; ++row)
{
for (col = 0; col < 3; ++col)
{
wwTrn[i][row][col] =
0.5f*wwTrn[i][row][col] + nor[row]*nor[col];
dwTrn[i][row][col] *= 0.5f;
}
}
wwTrn[i].SetColumn(3, APoint::ORIGIN);
dNormal[i] = dwTrn[i]*wwTrn[i].Inverse();
}
delete1(wwTrn);
delete1(dwTrn);
// If N is a unit-length normal at a vertex, let U and V be unit-length
// tangents so that {U, V, N} is an orthonormal set. Define the matrix
// J = [U | V], a 3-by-2 matrix whose columns are U and V. Define J^T
// to be the transpose of J, a 2-by-3 matrix. Let dN/dX denote the
// matrix of first-order derivatives of the normal vector field. The
// shape matrix is
// S = (J^T * J)^{-1} * J^T * dN/dX * J = J^T * dN/dX * J
// where the superscript of -1 denotes the inverse. (The formula allows
// for J built from non-perpendicular vectors.) The matrix S is 2-by-2.
// The principal curvatures are the eigenvalues of S. If k is a principal
// curvature and W is the 2-by-1 eigenvector corresponding to it, then
// S*W = k*W (by definition). The corresponding 3-by-1 tangent vector at
// the vertex is called the principal direction for k, and is J*W. The
// principal direction for the minimum principal curvature is stored as
// the mesh tangent. The principal direction for the maximum principal
// curvature is stored as the mesh bitangent.
for (i = 0; i < numVertices; ++i)
{
// Compute U and V given N.
AVector norvec = vba.Normal<Float3>(i);
AVector uvec, vvec;
AVector::GenerateComplementBasis(uvec, vvec, norvec);
// Compute S = J^T * dN/dX * J. In theory S is symmetric, but
// because we have estimated dN/dX, we must slightly adjust our
// calculations to make sure S is symmetric.
float s01 = uvec.Dot(dNormal[i]*vvec);
float s10 = vvec.Dot(dNormal[i]*uvec);
float sAvr = 0.5f*(s01 + s10);
float smat[2][2] =
{
{ uvec.Dot(dNormal[i]*uvec), sAvr },
{ sAvr, vvec.Dot(dNormal[i]*vvec) }
};
// Compute the eigenvalues of S (min and max curvatures).
float trace = smat[0][0] + smat[1][1];
float det = smat[0][0]*smat[1][1] - smat[0][1]*smat[1][0];
float discr = trace*trace - 4.0f*det;
float rootDiscr = Mathf::Sqrt(Mathf::FAbs(discr));
float minCurvature = 0.5f*(trace - rootDiscr);
// float maxCurvature = 0.5f*(trace + rootDiscr);
// Compute the eigenvectors of S.
AVector evec0(smat[0][1], minCurvature - smat[0][0], 0.0f);
AVector evec1(minCurvature - smat[1][1], smat[1][0], 0.0f);
AVector tanvec, binvec;
if (evec0.SquaredLength() >= evec1.SquaredLength())
{
evec0.Normalize();
tanvec = evec0.X()*uvec + evec0.Y()*vvec;
binvec = norvec.Cross(tanvec);
}
else
{
evec1.Normalize();
tanvec = evec1.X()*uvec + evec1.Y()*vvec;
binvec = norvec.Cross(tanvec);
}
if (vba.HasTangent())
{
vba.Tangent<Float3>(i) = tanvec;
}
if (vba.HasBinormal())
{
vba.Binormal<Float3>(i) = binvec;
}
}
delete1(dNormal);
}
//----------------------------------------------------------------------------
void Triangles::UpdateModelTangentsUseTCoords (VertexBufferAccessor& vba)
{
// Each vertex can be visited multiple times, so compute the tangent
// space only on the first visit. Use the zero vector as a flag for the
// tangent vector not being computed.
const int numVertices = vba.GetNumVertices();
bool hasTangent = vba.HasTangent();
Float3 zero(0.0f, 0.0f, 0.0f);
int i;
if (hasTangent)
{
for (i = 0; i < numVertices; ++i)
{
vba.Tangent<Float3>(i) = zero;
}
}
else
{
for (i = 0; i < numVertices; ++i)
{
vba.Binormal<Float3>(i) = zero;
}
}
const int numTriangles = GetNumTriangles();
for (i = 0; i < numTriangles; i++)
{
// Get the triangle vertices' positions, normals, tangents, and
// texture coordinates.
int v[3];
if (!GetTriangle(i, v[0], v[1], v[2]))
{
continue;
}
APoint locPosition[3];
AVector locNormal[3], locTangent[3];
Float2 locTCoord[2];
int curr;
for (curr = 0; curr < 3; ++curr)
{
int k = v[curr];
locPosition[curr] = vba.Position<Float3>(k);
locNormal[curr] = vba.Normal<Float3>(k);
locTangent[curr] = (hasTangent ? vba.Tangent<Float3>(k) :
vba.Binormal<Float3>(k));
locTCoord[curr] = vba.TCoord<Float2>(0, k);
}
for (curr = 0; curr < 3; ++curr)
{
Float3 currLocTangent = (Float3)locTangent[curr];
if (currLocTangent != zero)
{
// This vertex has already been visited.
continue;
}
// Compute the tangent space at the vertex.
AVector norvec = locNormal[curr];
int prev = ((curr + 2) % 3);
int next = ((curr + 1) % 3);
AVector tanvec = ComputeTangent(
locPosition[curr], locTCoord[curr],
locPosition[next], locTCoord[next],
locPosition[prev], locTCoord[prev]);
// Project T into the tangent plane by projecting out the surface
// normal N, and then making it unit length.
tanvec -= norvec.Dot(tanvec)*norvec;
tanvec.Normalize();
// Compute the bitangent B, another tangent perpendicular to T.
AVector binvec = norvec.UnitCross(tanvec);
int k = v[curr];
if (vba.HasTangent())
{
locTangent[k] = tanvec;
if (vba.HasBinormal())
{
vba.Binormal<Float3>(k) = binvec;
}
}
else
{
vba.Binormal<Float3>(k) = tanvec;
}
}
}
}
//----------------------------------------------------------------------------
AVector Triangles::ComputeTangent (
const APoint& position0, const Float2& tcoord0,
const APoint& position1, const Float2& tcoord1,
const APoint& position2, const Float2& tcoord2)
{
// Compute the change in positions at the vertex P0.
AVector diffP1P0 = position1 - position0;
AVector diffP2P0 = position2 - position0;
if (Mathf::FAbs(diffP1P0.Length()) < Mathf::ZERO_TOLERANCE
|| Mathf::FAbs(diffP2P0.Length()) < Mathf::ZERO_TOLERANCE)
{
// The triangle is very small, call it degenerate.
return AVector::ZERO;
}
// Compute the change in texture coordinates at the vertex P0 in the
// direction of edge P1-P0.
float diffU1U0 = tcoord1[0] - tcoord0[0];
float diffV1V0 = tcoord1[1] - tcoord0[1];
if (Mathf::FAbs(diffV1V0) < Mathf::ZERO_TOLERANCE)
{
// The triangle effectively has no variation in the v texture
// coordinate.
if (Mathf::FAbs(diffU1U0) < Mathf::ZERO_TOLERANCE)
{
// The triangle effectively has no variation in the u coordinate.
// Since the texture coordinates do not vary on this triangle,
// treat it as a degenerate parametric surface.
return AVector::ZERO;
}
// The variation is effectively all in u, so set the tangent vector
// to be T = dP/du.
return diffP1P0/diffU1U0;
}
// Compute the change in texture coordinates at the vertex P0 in the
// direction of edge P2-P0.
float diffU2U0 = tcoord2[0] - tcoord0[0];
float diffV2V0 = tcoord2[1] - tcoord0[1];
float det = diffV1V0*diffU2U0 - diffV2V0*diffU1U0;
if (Mathf::FAbs(det) < Mathf::ZERO_TOLERANCE)
{
// The triangle vertices are collinear in parameter space, so treat
// this as a degenerate parametric surface.
return AVector::ZERO;
}
// The triangle vertices are not collinear in parameter space, so choose
// the tangent to be dP/du = (dv1*dP2-dv2*dP1)/(dv1*du2-dv2*du1)
return (diffV1V0*diffP2P0 - diffV2V0*diffP1P0)/det;
}
//----------------------------------------------------------------------------
|