1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.0 (2010/01/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5AVector.h"
using namespace Wm5;
const AVector AVector::ZERO(0.0f, 0.0f, 0.0f);
const AVector AVector::UNIT_X(1.0f, 0.0f, 0.0f);
const AVector AVector::UNIT_Y(0.0f, 1.0f, 0.0f);
const AVector AVector::UNIT_Z(0.0f, 0.0f, 1.0f);
//----------------------------------------------------------------------------
AVector::AVector ()
{
mTuple[0] = 0.0f;
mTuple[1] = 0.0f;
mTuple[2] = 0.0f;
mTuple[3] = 0.0f;
}
//----------------------------------------------------------------------------
AVector::AVector (const AVector& vec)
{
mTuple[0] = vec.mTuple[0];
mTuple[1] = vec.mTuple[1];
mTuple[2] = vec.mTuple[2];
mTuple[3] = 0.0f;
}
//----------------------------------------------------------------------------
AVector::AVector (float x, float y, float z)
{
mTuple[0] = x;
mTuple[1] = y;
mTuple[2] = z;
mTuple[3] = 0.0f;
}
//----------------------------------------------------------------------------
AVector::AVector (const Float3& tuple)
{
mTuple[0] = tuple[0];
mTuple[1] = tuple[1];
mTuple[2] = tuple[2];
mTuple[3] = 0.0f;
}
//----------------------------------------------------------------------------
AVector::AVector (const Vector3f& tuple)
{
mTuple[0] = tuple[0];
mTuple[1] = tuple[1];
mTuple[2] = tuple[2];
mTuple[3] = 0.0f;
}
//----------------------------------------------------------------------------
AVector::~AVector ()
{
}
//----------------------------------------------------------------------------
AVector& AVector::operator= (const AVector& vec)
{
mTuple[0] = vec.mTuple[0];
mTuple[1] = vec.mTuple[1];
mTuple[2] = vec.mTuple[2];
mTuple[3] = 0.0f;
return *this;
}
//----------------------------------------------------------------------------
AVector AVector::operator+ (const AVector& vec) const
{
return AVector
(
mTuple[0] + vec.mTuple[0],
mTuple[1] + vec.mTuple[1],
mTuple[2] + vec.mTuple[2]
);
}
//----------------------------------------------------------------------------
AVector AVector::operator- (const AVector& vec) const
{
return AVector
(
mTuple[0] - vec.mTuple[0],
mTuple[1] - vec.mTuple[1],
mTuple[2] - vec.mTuple[2]
);
}
//----------------------------------------------------------------------------
AVector AVector::operator* (float scalar) const
{
return AVector
(
scalar*mTuple[0],
scalar*mTuple[1],
scalar*mTuple[2]
);
}
//----------------------------------------------------------------------------
AVector AVector::operator/ (float scalar) const
{
if (scalar != 0.0f)
{
float invScalar = 1.0f/scalar;
return AVector
(
invScalar*mTuple[0],
invScalar*mTuple[1],
invScalar*mTuple[2]
);
}
return AVector(FLT_MAX, FLT_MAX, FLT_MAX);
}
//----------------------------------------------------------------------------
AVector AVector::operator- () const
{
return AVector(-mTuple[0], -mTuple[1], -mTuple[2]);
}
//----------------------------------------------------------------------------
AVector Wm5::operator* (float scalar, const AVector& vec)
{
return vec*scalar;
}
//----------------------------------------------------------------------------
AVector& AVector::operator+= (const AVector& vec)
{
mTuple[0] += vec[0];
mTuple[1] += vec[1];
mTuple[2] += vec[2];
return *this;
}
//----------------------------------------------------------------------------
AVector& AVector::operator-= (const AVector& vec)
{
mTuple[0] -= vec[0];
mTuple[1] -= vec[1];
mTuple[2] -= vec[2];
return *this;
}
//----------------------------------------------------------------------------
AVector& AVector::operator*= (float scalar)
{
mTuple[0] *= scalar;
mTuple[1] *= scalar;
mTuple[2] *= scalar;
return *this;
}
//----------------------------------------------------------------------------
AVector& AVector::operator/= (float scalar)
{
if (scalar != 0.0f)
{
float invScalar = 1.0f/scalar;
mTuple[0] *= invScalar;
mTuple[1] *= invScalar;
mTuple[2] *= invScalar;
}
else
{
mTuple[0] = FLT_MAX;
mTuple[1] = FLT_MAX;
mTuple[2] = FLT_MAX;
}
return *this;
}
//----------------------------------------------------------------------------
float AVector::Length () const
{
float sqrLength = mTuple[0]*mTuple[0] + mTuple[1]*mTuple[1] +
mTuple[2]*mTuple[2];
return sqrtf(sqrLength);
}
//----------------------------------------------------------------------------
float AVector::SquaredLength () const
{
float sqrLength = mTuple[0]*mTuple[0] + mTuple[1]*mTuple[1] +
mTuple[2]*mTuple[2];
return sqrLength;
}
//----------------------------------------------------------------------------
float AVector::Dot (const AVector& vec) const
{
float dotProduct = mTuple[0]*vec.mTuple[0] + mTuple[1]*vec.mTuple[1] +
mTuple[2]*vec.mTuple[2];
return dotProduct;
}
//----------------------------------------------------------------------------
float AVector::Normalize (const float epsilon)
{
float length = Length();
if (length > epsilon)
{
float invLength = 1.0f/length;
mTuple[0] *= invLength;
mTuple[1] *= invLength;
mTuple[2] *= invLength;
}
else
{
length = 0.0f;
mTuple[0] = 0.0f;
mTuple[1] = 0.0f;
mTuple[2] = 0.0f;
}
return length;
}
//----------------------------------------------------------------------------
AVector AVector::Cross (const AVector& vec) const
{
return AVector
(
mTuple[1]*vec.mTuple[2] - mTuple[2]*vec.mTuple[1],
mTuple[2]*vec.mTuple[0] - mTuple[0]*vec.mTuple[2],
mTuple[0]*vec.mTuple[1] - mTuple[1]*vec.mTuple[0]
);
}
//----------------------------------------------------------------------------
AVector AVector::UnitCross (const AVector& vec) const
{
AVector cross
(
mTuple[1]*vec.mTuple[2] - mTuple[2]*vec.mTuple[1],
mTuple[2]*vec.mTuple[0] - mTuple[0]*vec.mTuple[2],
mTuple[0]*vec.mTuple[1] - mTuple[1]*vec.mTuple[0]
);
cross.Normalize();
return cross;
}
//----------------------------------------------------------------------------
void AVector::Orthonormalize (AVector& vec0, AVector& vec1, AVector& vec2)
{
// If the input vectors are v0, v1, and v2, then the Gram-Schmidt
// orthonormalization produces vectors u0, u1, and u2 as follows,
//
// u0 = v0/|v0|
// u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
// u2 = (v2-(u0*v2)u0-(u1*v2)u1)/|v2-(u0*v2)u0-(u1*v2)u1|
//
// where |A| indicates length of vector A and A*B indicates dot
// product of vectors A and B.
// Compute u0.
vec0.Normalize();
// Compute u1.
float dot0 = vec0.Dot(vec1);
vec1 -= dot0*vec0;
vec1.Normalize();
// Compute u2.
float dot1 = vec1.Dot(vec2);
dot0 = vec0.Dot(vec2);
vec2 -= dot0*vec0 + dot1*vec1;
vec2.Normalize();
}
//----------------------------------------------------------------------------
void AVector::Orthonormalize (AVector* vec)
{
Orthonormalize(vec[0], vec[1], vec[2]);
}
//----------------------------------------------------------------------------
void AVector::GenerateOrthonormalBasis (AVector& vec0, AVector& vec1,
AVector& vec2)
{
vec2.Normalize();
GenerateComplementBasis(vec0, vec1, vec2);
}
//----------------------------------------------------------------------------
void AVector::GenerateComplementBasis (AVector& vec0, AVector& vec1,
const AVector& vec2)
{
float invLength;
if (fabsf(vec2.mTuple[0]) >= fabsf(vec2.mTuple[1]))
{
// vec2.x or vec2.z is the largest magnitude component, swap them
invLength = 1.0f/sqrtf(vec2.mTuple[0]*vec2.mTuple[0] +
vec2.mTuple[2]*vec2.mTuple[2]);
vec0.mTuple[0] = -vec2.mTuple[2]*invLength;
vec0.mTuple[1] = 0.0f;
vec0.mTuple[2] = +vec2.mTuple[0]*invLength;
vec1.mTuple[0] = vec2.mTuple[1]*vec0.mTuple[2];
vec1.mTuple[1] = vec2.mTuple[2]*vec0.mTuple[0] -
vec2.mTuple[0]*vec0.mTuple[2];
vec1.mTuple[2] = -vec2.mTuple[1]*vec0.mTuple[0];
}
else
{
// vec2.y or vec2.z is the largest magnitude component, swap them
invLength = 1.0f/sqrtf(vec2.mTuple[1]*vec2.mTuple[1] +
vec2.mTuple[2]*vec2.mTuple[2]);
vec0.mTuple[0] = 0.0f;
vec0.mTuple[1] = +vec2.mTuple[2]*invLength;
vec0.mTuple[2] = -vec2.mTuple[1]*invLength;
vec1.mTuple[0] = vec2.mTuple[1]*vec0.mTuple[2] -
vec2.mTuple[2]*vec0.mTuple[1];
vec1.mTuple[1] = -vec2.mTuple[0]*vec0.mTuple[2];
vec1.mTuple[2] = vec2.mTuple[0]*vec0.mTuple[1];
}
}
//----------------------------------------------------------------------------
|