File: Wm5AVector.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 90,124 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 40
file content (311 lines) | stat: -rw-r--r-- 9,507 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.0 (2010/01/01)

#include "Wm5MathematicsPCH.h"
#include "Wm5AVector.h"
using namespace Wm5;

const AVector AVector::ZERO(0.0f, 0.0f, 0.0f);
const AVector AVector::UNIT_X(1.0f, 0.0f, 0.0f);
const AVector AVector::UNIT_Y(0.0f, 1.0f, 0.0f);
const AVector AVector::UNIT_Z(0.0f, 0.0f, 1.0f);

//----------------------------------------------------------------------------
AVector::AVector ()
{
    mTuple[0] = 0.0f;
    mTuple[1] = 0.0f;
    mTuple[2] = 0.0f;
    mTuple[3] = 0.0f;
}
//----------------------------------------------------------------------------
AVector::AVector (const AVector& vec)
{
    mTuple[0] = vec.mTuple[0];
    mTuple[1] = vec.mTuple[1];
    mTuple[2] = vec.mTuple[2];
    mTuple[3] = 0.0f;
}
//----------------------------------------------------------------------------
AVector::AVector (float x, float y, float z)
{
    mTuple[0] = x;
    mTuple[1] = y;
    mTuple[2] = z;
    mTuple[3] = 0.0f;
}
//----------------------------------------------------------------------------
AVector::AVector (const Float3& tuple)
{
    mTuple[0] = tuple[0];
    mTuple[1] = tuple[1];
    mTuple[2] = tuple[2];
    mTuple[3] = 0.0f;
}
//----------------------------------------------------------------------------
AVector::AVector (const Vector3f& tuple)
{
    mTuple[0] = tuple[0];
    mTuple[1] = tuple[1];
    mTuple[2] = tuple[2];
    mTuple[3] = 0.0f;
}
//----------------------------------------------------------------------------
AVector::~AVector ()
{
}
//----------------------------------------------------------------------------
AVector& AVector::operator= (const AVector& vec)
{
    mTuple[0] = vec.mTuple[0];
    mTuple[1] = vec.mTuple[1];
    mTuple[2] = vec.mTuple[2];
    mTuple[3] = 0.0f;
    return *this;
}
//----------------------------------------------------------------------------
AVector AVector::operator+ (const AVector& vec) const
{
    return AVector
    (
        mTuple[0] + vec.mTuple[0],
        mTuple[1] + vec.mTuple[1],
        mTuple[2] + vec.mTuple[2]
    );
}
//----------------------------------------------------------------------------
AVector AVector::operator- (const AVector& vec) const
{
    return AVector
    (
        mTuple[0] - vec.mTuple[0],
        mTuple[1] - vec.mTuple[1],
        mTuple[2] - vec.mTuple[2]
    );
}
//----------------------------------------------------------------------------
AVector AVector::operator* (float scalar) const
{
    return AVector
    (
        scalar*mTuple[0],
        scalar*mTuple[1],
        scalar*mTuple[2]
    );
}
//----------------------------------------------------------------------------
AVector AVector::operator/ (float scalar) const
{
    if (scalar != 0.0f)
    {
        float invScalar = 1.0f/scalar;
        return AVector
        (
            invScalar*mTuple[0],
            invScalar*mTuple[1],
            invScalar*mTuple[2]
        );
    }

    return AVector(FLT_MAX, FLT_MAX, FLT_MAX);
}
//----------------------------------------------------------------------------
AVector AVector::operator- () const
{
    return AVector(-mTuple[0], -mTuple[1], -mTuple[2]);
}
//----------------------------------------------------------------------------
AVector Wm5::operator* (float scalar, const AVector& vec)
{
    return vec*scalar;
}
//----------------------------------------------------------------------------
AVector& AVector::operator+= (const AVector& vec)
{
    mTuple[0] += vec[0];
    mTuple[1] += vec[1];
    mTuple[2] += vec[2];
    return *this;
}
//----------------------------------------------------------------------------
AVector& AVector::operator-= (const AVector& vec)
{
    mTuple[0] -= vec[0];
    mTuple[1] -= vec[1];
    mTuple[2] -= vec[2];
    return *this;
}
//----------------------------------------------------------------------------
AVector& AVector::operator*= (float scalar)
{
    mTuple[0] *= scalar;
    mTuple[1] *= scalar;
    mTuple[2] *= scalar;
    return *this;
}
//----------------------------------------------------------------------------
AVector& AVector::operator/= (float scalar)
{
    if (scalar != 0.0f)
    {
        float invScalar = 1.0f/scalar;
        mTuple[0] *= invScalar;
        mTuple[1] *= invScalar;
        mTuple[2] *= invScalar;
    }
    else
    {
        mTuple[0] = FLT_MAX;
        mTuple[1] = FLT_MAX;
        mTuple[2] = FLT_MAX;
    }

    return *this;
}
//----------------------------------------------------------------------------
float AVector::Length () const
{
    float sqrLength = mTuple[0]*mTuple[0] + mTuple[1]*mTuple[1] +
        mTuple[2]*mTuple[2];

    return sqrtf(sqrLength);
}
//----------------------------------------------------------------------------
float AVector::SquaredLength () const
{
    float sqrLength = mTuple[0]*mTuple[0] + mTuple[1]*mTuple[1] +
        mTuple[2]*mTuple[2];

    return sqrLength;
}
//----------------------------------------------------------------------------
float AVector::Dot (const AVector& vec) const
{
    float dotProduct = mTuple[0]*vec.mTuple[0] + mTuple[1]*vec.mTuple[1] +
        mTuple[2]*vec.mTuple[2];

    return dotProduct;
}
//----------------------------------------------------------------------------
float AVector::Normalize (const float epsilon)
{
    float length = Length();

    if (length > epsilon)
    {
        float invLength = 1.0f/length;
        mTuple[0] *= invLength;
        mTuple[1] *= invLength;
        mTuple[2] *= invLength;
    }
    else
    {
        length = 0.0f;
        mTuple[0] = 0.0f;
        mTuple[1] = 0.0f;
        mTuple[2] = 0.0f;
    }

    return length;
}
//----------------------------------------------------------------------------
AVector AVector::Cross (const AVector& vec) const
{
    return AVector
    (
        mTuple[1]*vec.mTuple[2] - mTuple[2]*vec.mTuple[1],
        mTuple[2]*vec.mTuple[0] - mTuple[0]*vec.mTuple[2],
        mTuple[0]*vec.mTuple[1] - mTuple[1]*vec.mTuple[0]
    );
}
//----------------------------------------------------------------------------
AVector AVector::UnitCross (const AVector& vec) const
{
    AVector cross
    (
        mTuple[1]*vec.mTuple[2] - mTuple[2]*vec.mTuple[1],
        mTuple[2]*vec.mTuple[0] - mTuple[0]*vec.mTuple[2],
        mTuple[0]*vec.mTuple[1] - mTuple[1]*vec.mTuple[0]
    );

    cross.Normalize();
    return cross;
}
//----------------------------------------------------------------------------
void AVector::Orthonormalize (AVector& vec0, AVector& vec1, AVector& vec2)
{
    // If the input vectors are v0, v1, and v2, then the Gram-Schmidt
    // orthonormalization produces vectors u0, u1, and u2 as follows,
    //
    //   u0 = v0/|v0|
    //   u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
    //   u2 = (v2-(u0*v2)u0-(u1*v2)u1)/|v2-(u0*v2)u0-(u1*v2)u1|
    //
    // where |A| indicates length of vector A and A*B indicates dot
    // product of vectors A and B.

    // Compute u0.
    vec0.Normalize();

    // Compute u1.
    float dot0 = vec0.Dot(vec1); 
    vec1 -= dot0*vec0;
    vec1.Normalize();

    // Compute u2.
    float dot1 = vec1.Dot(vec2);
    dot0 = vec0.Dot(vec2);
    vec2 -= dot0*vec0 + dot1*vec1;
    vec2.Normalize();
}
//----------------------------------------------------------------------------
void AVector::Orthonormalize (AVector* vec)
{
    Orthonormalize(vec[0], vec[1], vec[2]);
}
//----------------------------------------------------------------------------
void AVector::GenerateOrthonormalBasis (AVector& vec0, AVector& vec1,
    AVector& vec2)
{
    vec2.Normalize();
    GenerateComplementBasis(vec0, vec1, vec2);
}
//----------------------------------------------------------------------------
void AVector::GenerateComplementBasis (AVector& vec0, AVector& vec1,
    const AVector& vec2)
{
    float invLength;

    if (fabsf(vec2.mTuple[0]) >= fabsf(vec2.mTuple[1]))
    {
        // vec2.x or vec2.z is the largest magnitude component, swap them
        invLength = 1.0f/sqrtf(vec2.mTuple[0]*vec2.mTuple[0] +
            vec2.mTuple[2]*vec2.mTuple[2]);
        vec0.mTuple[0] = -vec2.mTuple[2]*invLength;
        vec0.mTuple[1] = 0.0f;
        vec0.mTuple[2] = +vec2.mTuple[0]*invLength;
        vec1.mTuple[0] = vec2.mTuple[1]*vec0.mTuple[2];
        vec1.mTuple[1] = vec2.mTuple[2]*vec0.mTuple[0] -
            vec2.mTuple[0]*vec0.mTuple[2];
        vec1.mTuple[2] = -vec2.mTuple[1]*vec0.mTuple[0];
    }
    else
    {
        // vec2.y or vec2.z is the largest magnitude component, swap them
        invLength = 1.0f/sqrtf(vec2.mTuple[1]*vec2.mTuple[1] +
            vec2.mTuple[2]*vec2.mTuple[2]);
        vec0.mTuple[0] = 0.0f;
        vec0.mTuple[1] = +vec2.mTuple[2]*invLength;
        vec0.mTuple[2] = -vec2.mTuple[1]*invLength;
        vec1.mTuple[0] = vec2.mTuple[1]*vec0.mTuple[2] -
            vec2.mTuple[2]*vec0.mTuple[1];
        vec1.mTuple[1] = -vec2.mTuple[0]*vec0.mTuple[2];
        vec1.mTuple[2] = vec2.mTuple[0]*vec0.mTuple[1];
    }
}
//----------------------------------------------------------------------------