File: Wm5TAVector.h

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 90,124 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 40
file content (352 lines) | stat: -rw-r--r-- 9,465 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// Geometric Tools, LLC
// Copyright (c) 1998-2017
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.16.1 (2017/10/12)

#ifndef WM5TAVECTOR_H
#define WM5TAVECTOR_H

#include "Wm5MathematicsLIB.h"
#include "Wm5THPoint.h"
#include "Wm5Vector3.h"

namespace Wm5
{

template <typename Real>
class TAVector : public THPoint<Real>
{
public:
    // Construction and destruction.  TAVector represents an affine vector of
    // the form (x,y,z,0).  The destructor hides the HPoint destructor, which
    // is not a problem because there are no side effects that must occur in
    // the base class.
    TAVector()
    {
        mTuple[0] = (Real)0;
        mTuple[1] = (Real)0;
        mTuple[2] = (Real)0;
        mTuple[3] = (Real)0;
    }

    TAVector(const TAVector& vec)
    {
        mTuple[0] = vec.mTuple[0];
        mTuple[1] = vec.mTuple[1];
        mTuple[2] = vec.mTuple[2];
        mTuple[3] = (Real)0;
    }

    TAVector(Real x, Real y, Real z)
    {
        mTuple[0] = x;
        mTuple[1] = y;
        mTuple[2] = z;
        mTuple[3] = (Real)0;
    }

    TAVector(Vector3<Real> const& vec)
    {
        mTuple[0] = vec[0];
        mTuple[1] = vec[1];
        mTuple[2] = vec[2];
        mTuple[3] = (Real)0;
    }

    ~TAVector()
    {
    }

    // Implicit conversions.
    operator const Vector3<Real>& () const
    {
        return *(const Vector3<Real>*)mTuple;
    }

    operator Vector3<Real>& ()
    {
        return *(Vector3<Real>*)mTuple;
    }

    // Assignment.
    TAVector& operator= (const TAVector& vec)
    {
        mTuple[0] = vec.mTuple[0];
        mTuple[1] = vec.mTuple[1];
        mTuple[2] = vec.mTuple[2];
        mTuple[3] = (Real)0;
        return *this;
    }

    // Arithmetic operations.
    TAVector operator+ (const TAVector& vec) const
    {
        return TAVector
        (
            mTuple[0] + vec.mTuple[0],
            mTuple[1] + vec.mTuple[1],
            mTuple[2] + vec.mTuple[2]
        );
    }

    TAVector operator- (const TAVector& vec) const
    {
        return TAVector
        (
            mTuple[0] - vec.mTuple[0],
            mTuple[1] - vec.mTuple[1],
            mTuple[2] - vec.mTuple[2]
        );
    }

    TAVector operator* (Real scalar) const
    {
        return TAVector
        (
            scalar * mTuple[0],
            scalar * mTuple[1],
            scalar * mTuple[2]
        );
    }

    TAVector operator/ (Real scalar) const
    {
        if (scalar != (Real)0)
        {
            Real invScalar = (Real)1 / scalar;
            return TAVector
            (
                invScalar * mTuple[0],
                invScalar * mTuple[1],
                invScalar * mTuple[2]
            );
        }

        Real infinity = std::numeric_limits<Real>::infinity();
        return TAVector(infinity, infinity, infinity);
    }

    TAVector operator- () const
    {
        return TAVector(-mTuple[0], -mTuple[1], -mTuple[2]);
    }

    // Arithmetic updates.
    TAVector& operator+= (const TAVector& vec)
    {
        mTuple[0] += vec[0];
        mTuple[1] += vec[1];
        mTuple[2] += vec[2];
        return *this;
    }

    TAVector& operator-= (const TAVector& vec)
    {
        mTuple[0] -= vec[0];
        mTuple[1] -= vec[1];
        mTuple[2] -= vec[2];
        return *this;
    }

    TAVector& operator*= (Real scalar)
    {
        mTuple[0] *= scalar;
        mTuple[1] *= scalar;
        mTuple[2] *= scalar;
        return *this;
    }

    TAVector& operator/= (Real scalar)
    {
        mTuple[0] /= scalar;
        mTuple[1] /= scalar;
        mTuple[2] /= scalar;
        return *this;
    }

    // Vector operations.
    Real Length() const
    {
        Real sqrLength = mTuple[0] * mTuple[0] + mTuple[1] * mTuple[1] +
            mTuple[2] * mTuple[2];

        return sqrt(sqrLength);
    }

    Real SquaredLength() const
    {
        Real sqrLength = mTuple[0] * mTuple[0] + mTuple[1] * mTuple[1] +
            mTuple[2] * mTuple[2];

        return sqrLength;
    }

    Real Dot(const TAVector& vec) const
    {
        Real dotProduct = mTuple[0] * vec.mTuple[0] + mTuple[1] * vec.mTuple[1] +
            mTuple[2] * vec.mTuple[2];

        return dotProduct;
    }

    Real Normalize(const Real epsilon = (Real)0)
    {
        Real length = Length();

        if (length > epsilon)
        {
            mTuple[0] /= length;
            mTuple[1] /= length;
            mTuple[2] /= length;
        }
        else
        {
            length = (Real)0;
            mTuple[0] = (Real)0;
            mTuple[1] = (Real)0;
            mTuple[2] = (Real)0;
        }

        return length;
    }

    TAVector Cross(const TAVector& vec) const
    {
        return TAVector
        (
            mTuple[1] * vec.mTuple[2] - mTuple[2] * vec.mTuple[1],
            mTuple[2] * vec.mTuple[0] - mTuple[0] * vec.mTuple[2],
            mTuple[0] * vec.mTuple[1] - mTuple[1] * vec.mTuple[0]
        );
    }

    TAVector UnitCross(const TAVector& vec) const
    {
        TAVector cross
        (
            mTuple[1] * vec.mTuple[2] - mTuple[2] * vec.mTuple[1],
            mTuple[2] * vec.mTuple[0] - mTuple[0] * vec.mTuple[2],
            mTuple[0] * vec.mTuple[1] - mTuple[1] * vec.mTuple[0]
        );

        cross.Normalize();
        return cross;
    }

    // Inputs must be initialized nonzero vectors.
    static void Orthonormalize(TAVector& vec0, TAVector& vec1, TAVector& vec2)
    {
        // If the input vectors are v0, v1, and v2, then the Gram-Schmidt
        // orthonormalization produces vectors u0, u1, and u2 as follows,
        //
        //   u0 = v0/|v0|
        //   u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
        //   u2 = (v2-(u0*v2)u0-(u1*v2)u1)/|v2-(u0*v2)u0-(u1*v2)u1|
        //
        // where |A| indicates length of vector A and A*B indicates dot
        // product of vectors A and B.

        // Compute u0.
        vec0.Normalize();

        // Compute u1.
        Real dot0 = vec0.Dot(vec1);
        vec1 -= dot0*vec0;
        vec1.Normalize();

        // Compute u2.
        Real dot1 = vec1.Dot(vec2);
        dot0 = vec0.Dot(vec2);
        vec2 -= dot0*vec0 + dot1*vec1;
        vec2.Normalize();
    }

    static void Orthonormalize(TAVector* vec)
    {
        Orthonormalize(vec[0], vec[1], vec[2]);
    }

    // Input vec2 must be a nonzero vector. The output is an orthonormal
    // basis {vec0,vec1,vec2}.  The input vec2 is normalized by this function.
    // If you know that vec2 is already unit length, use the function
    // GenerateComplementBasis to compute vec0 and vec1.
    static void GenerateOrthonormalBasis(TAVector& vec0, TAVector& vec1,
        TAVector& vec2)
    {
        vec2.Normalize();
        GenerateComplementBasis(vec0, vec1, vec2);
    }

    // Input vec0 must be a unit-length vector.  The output vectors
    // {vec0,vec1} are unit length and mutually perpendicular, and
    // {vec0,vec1,vec2} is an orthonormal basis.
    static void GenerateComplementBasis(TAVector& vec0, TAVector& vec1,
        const TAVector& vec2)
    {
        Real invLength;

        if (fabs(vec2.mTuple[0]) >= fabs(vec2.mTuple[1]))
        {
            // vec2.x or vec2.z is the largest magnitude component, swap them
            invLength = (Real)1 / sqrt(vec2.mTuple[0] * vec2.mTuple[0] +
                vec2.mTuple[2] * vec2.mTuple[2]);
            vec0.mTuple[0] = -vec2.mTuple[2] * invLength;
            vec0.mTuple[1] = (Real)0;
            vec0.mTuple[2] = +vec2.mTuple[0] * invLength;
            vec1.mTuple[0] = vec2.mTuple[1] * vec0.mTuple[2];
            vec1.mTuple[1] = vec2.mTuple[2] * vec0.mTuple[0] -
                vec2.mTuple[0] * vec0.mTuple[2];
            vec1.mTuple[2] = -vec2.mTuple[1] * vec0.mTuple[0];
        }
        else
        {
            // vec2.y or vec2.z is the largest magnitude component, swap them
            invLength = (Real)1 / sqrt(vec2.mTuple[1] * vec2.mTuple[1] +
                vec2.mTuple[2] * vec2.mTuple[2]);
            vec0.mTuple[0] = (Real)0;
            vec0.mTuple[1] = +vec2.mTuple[2] * invLength;
            vec0.mTuple[2] = -vec2.mTuple[1] * invLength;
            vec1.mTuple[0] = vec2.mTuple[1] * vec0.mTuple[2] -
                vec2.mTuple[2] * vec0.mTuple[1];
            vec1.mTuple[1] = -vec2.mTuple[0] * vec0.mTuple[2];
            vec1.mTuple[2] = vec2.mTuple[0] * vec0.mTuple[1];
        }
    }

    // Special vectors.
    static const TAVector ZERO()
    {
        return TAVector((Real)0, (Real)0, (Real)0);
    }

    static const TAVector UNIT_X()
    {
        return TAVector((Real)1, (Real)0, (Real)0);
    }

    static const TAVector UNIT_Y()
    {
        return TAVector((Real)0, (Real)1, (Real)0);
    }

    static const TAVector UNIT_Z()
    {
        return TAVector((Real)0, (Real)0, (Real)1);
    }

protected:
    using THPoint<Real>::mTuple;
};

template <typename Real>
TAVector<Real> operator* (Real scalar, const TAVector<Real>& vec)
{
    return vec * scalar;
}

}

#endif