1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
// Geometric Tools, LLC
// Copyright (c) 1998-2017
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.16.1 (2017/10/12)
#ifndef WM5TAVECTOR_H
#define WM5TAVECTOR_H
#include "Wm5MathematicsLIB.h"
#include "Wm5THPoint.h"
#include "Wm5Vector3.h"
namespace Wm5
{
template <typename Real>
class TAVector : public THPoint<Real>
{
public:
// Construction and destruction. TAVector represents an affine vector of
// the form (x,y,z,0). The destructor hides the HPoint destructor, which
// is not a problem because there are no side effects that must occur in
// the base class.
TAVector()
{
mTuple[0] = (Real)0;
mTuple[1] = (Real)0;
mTuple[2] = (Real)0;
mTuple[3] = (Real)0;
}
TAVector(const TAVector& vec)
{
mTuple[0] = vec.mTuple[0];
mTuple[1] = vec.mTuple[1];
mTuple[2] = vec.mTuple[2];
mTuple[3] = (Real)0;
}
TAVector(Real x, Real y, Real z)
{
mTuple[0] = x;
mTuple[1] = y;
mTuple[2] = z;
mTuple[3] = (Real)0;
}
TAVector(Vector3<Real> const& vec)
{
mTuple[0] = vec[0];
mTuple[1] = vec[1];
mTuple[2] = vec[2];
mTuple[3] = (Real)0;
}
~TAVector()
{
}
// Implicit conversions.
operator const Vector3<Real>& () const
{
return *(const Vector3<Real>*)mTuple;
}
operator Vector3<Real>& ()
{
return *(Vector3<Real>*)mTuple;
}
// Assignment.
TAVector& operator= (const TAVector& vec)
{
mTuple[0] = vec.mTuple[0];
mTuple[1] = vec.mTuple[1];
mTuple[2] = vec.mTuple[2];
mTuple[3] = (Real)0;
return *this;
}
// Arithmetic operations.
TAVector operator+ (const TAVector& vec) const
{
return TAVector
(
mTuple[0] + vec.mTuple[0],
mTuple[1] + vec.mTuple[1],
mTuple[2] + vec.mTuple[2]
);
}
TAVector operator- (const TAVector& vec) const
{
return TAVector
(
mTuple[0] - vec.mTuple[0],
mTuple[1] - vec.mTuple[1],
mTuple[2] - vec.mTuple[2]
);
}
TAVector operator* (Real scalar) const
{
return TAVector
(
scalar * mTuple[0],
scalar * mTuple[1],
scalar * mTuple[2]
);
}
TAVector operator/ (Real scalar) const
{
if (scalar != (Real)0)
{
Real invScalar = (Real)1 / scalar;
return TAVector
(
invScalar * mTuple[0],
invScalar * mTuple[1],
invScalar * mTuple[2]
);
}
Real infinity = std::numeric_limits<Real>::infinity();
return TAVector(infinity, infinity, infinity);
}
TAVector operator- () const
{
return TAVector(-mTuple[0], -mTuple[1], -mTuple[2]);
}
// Arithmetic updates.
TAVector& operator+= (const TAVector& vec)
{
mTuple[0] += vec[0];
mTuple[1] += vec[1];
mTuple[2] += vec[2];
return *this;
}
TAVector& operator-= (const TAVector& vec)
{
mTuple[0] -= vec[0];
mTuple[1] -= vec[1];
mTuple[2] -= vec[2];
return *this;
}
TAVector& operator*= (Real scalar)
{
mTuple[0] *= scalar;
mTuple[1] *= scalar;
mTuple[2] *= scalar;
return *this;
}
TAVector& operator/= (Real scalar)
{
mTuple[0] /= scalar;
mTuple[1] /= scalar;
mTuple[2] /= scalar;
return *this;
}
// Vector operations.
Real Length() const
{
Real sqrLength = mTuple[0] * mTuple[0] + mTuple[1] * mTuple[1] +
mTuple[2] * mTuple[2];
return sqrt(sqrLength);
}
Real SquaredLength() const
{
Real sqrLength = mTuple[0] * mTuple[0] + mTuple[1] * mTuple[1] +
mTuple[2] * mTuple[2];
return sqrLength;
}
Real Dot(const TAVector& vec) const
{
Real dotProduct = mTuple[0] * vec.mTuple[0] + mTuple[1] * vec.mTuple[1] +
mTuple[2] * vec.mTuple[2];
return dotProduct;
}
Real Normalize(const Real epsilon = (Real)0)
{
Real length = Length();
if (length > epsilon)
{
mTuple[0] /= length;
mTuple[1] /= length;
mTuple[2] /= length;
}
else
{
length = (Real)0;
mTuple[0] = (Real)0;
mTuple[1] = (Real)0;
mTuple[2] = (Real)0;
}
return length;
}
TAVector Cross(const TAVector& vec) const
{
return TAVector
(
mTuple[1] * vec.mTuple[2] - mTuple[2] * vec.mTuple[1],
mTuple[2] * vec.mTuple[0] - mTuple[0] * vec.mTuple[2],
mTuple[0] * vec.mTuple[1] - mTuple[1] * vec.mTuple[0]
);
}
TAVector UnitCross(const TAVector& vec) const
{
TAVector cross
(
mTuple[1] * vec.mTuple[2] - mTuple[2] * vec.mTuple[1],
mTuple[2] * vec.mTuple[0] - mTuple[0] * vec.mTuple[2],
mTuple[0] * vec.mTuple[1] - mTuple[1] * vec.mTuple[0]
);
cross.Normalize();
return cross;
}
// Inputs must be initialized nonzero vectors.
static void Orthonormalize(TAVector& vec0, TAVector& vec1, TAVector& vec2)
{
// If the input vectors are v0, v1, and v2, then the Gram-Schmidt
// orthonormalization produces vectors u0, u1, and u2 as follows,
//
// u0 = v0/|v0|
// u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
// u2 = (v2-(u0*v2)u0-(u1*v2)u1)/|v2-(u0*v2)u0-(u1*v2)u1|
//
// where |A| indicates length of vector A and A*B indicates dot
// product of vectors A and B.
// Compute u0.
vec0.Normalize();
// Compute u1.
Real dot0 = vec0.Dot(vec1);
vec1 -= dot0*vec0;
vec1.Normalize();
// Compute u2.
Real dot1 = vec1.Dot(vec2);
dot0 = vec0.Dot(vec2);
vec2 -= dot0*vec0 + dot1*vec1;
vec2.Normalize();
}
static void Orthonormalize(TAVector* vec)
{
Orthonormalize(vec[0], vec[1], vec[2]);
}
// Input vec2 must be a nonzero vector. The output is an orthonormal
// basis {vec0,vec1,vec2}. The input vec2 is normalized by this function.
// If you know that vec2 is already unit length, use the function
// GenerateComplementBasis to compute vec0 and vec1.
static void GenerateOrthonormalBasis(TAVector& vec0, TAVector& vec1,
TAVector& vec2)
{
vec2.Normalize();
GenerateComplementBasis(vec0, vec1, vec2);
}
// Input vec0 must be a unit-length vector. The output vectors
// {vec0,vec1} are unit length and mutually perpendicular, and
// {vec0,vec1,vec2} is an orthonormal basis.
static void GenerateComplementBasis(TAVector& vec0, TAVector& vec1,
const TAVector& vec2)
{
Real invLength;
if (fabs(vec2.mTuple[0]) >= fabs(vec2.mTuple[1]))
{
// vec2.x or vec2.z is the largest magnitude component, swap them
invLength = (Real)1 / sqrt(vec2.mTuple[0] * vec2.mTuple[0] +
vec2.mTuple[2] * vec2.mTuple[2]);
vec0.mTuple[0] = -vec2.mTuple[2] * invLength;
vec0.mTuple[1] = (Real)0;
vec0.mTuple[2] = +vec2.mTuple[0] * invLength;
vec1.mTuple[0] = vec2.mTuple[1] * vec0.mTuple[2];
vec1.mTuple[1] = vec2.mTuple[2] * vec0.mTuple[0] -
vec2.mTuple[0] * vec0.mTuple[2];
vec1.mTuple[2] = -vec2.mTuple[1] * vec0.mTuple[0];
}
else
{
// vec2.y or vec2.z is the largest magnitude component, swap them
invLength = (Real)1 / sqrt(vec2.mTuple[1] * vec2.mTuple[1] +
vec2.mTuple[2] * vec2.mTuple[2]);
vec0.mTuple[0] = (Real)0;
vec0.mTuple[1] = +vec2.mTuple[2] * invLength;
vec0.mTuple[2] = -vec2.mTuple[1] * invLength;
vec1.mTuple[0] = vec2.mTuple[1] * vec0.mTuple[2] -
vec2.mTuple[2] * vec0.mTuple[1];
vec1.mTuple[1] = -vec2.mTuple[0] * vec0.mTuple[2];
vec1.mTuple[2] = vec2.mTuple[0] * vec0.mTuple[1];
}
}
// Special vectors.
static const TAVector ZERO()
{
return TAVector((Real)0, (Real)0, (Real)0);
}
static const TAVector UNIT_X()
{
return TAVector((Real)1, (Real)0, (Real)0);
}
static const TAVector UNIT_Y()
{
return TAVector((Real)0, (Real)1, (Real)0);
}
static const TAVector UNIT_Z()
{
return TAVector((Real)0, (Real)0, (Real)1);
}
protected:
using THPoint<Real>::mTuple;
};
template <typename Real>
TAVector<Real> operator* (Real scalar, const TAVector<Real>& vec)
{
return vec * scalar;
}
}
#endif
|