File: Wm5THPlane.h

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 90,124 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 40
file content (265 lines) | stat: -rw-r--r-- 6,694 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// Geometric Tools, LLC
// Copyright (c) 1998-2017
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.16.0 (2017/08/24)

#ifndef WM5THPLANE_H
#define WM5THPLANE_H

#include "Wm5MathematicsLIB.h"
#include "Wm5TAPoint.h"

namespace Wm5
{

template <typename Real>
class THPlane
{
public:
    // The plane is represented as Dot(N,X) - c = 0, where N = (n0,n1,n2,0)
    // is a unit-length normal vector, c is the plane constant, and
    // X = (x0,x1,x2,1) is any point on the plane.  The user must ensure
    // that the normal vector is unit length.  The storage as a 4-tuple is
    // (n0,n1,n2,-c).

    // Construction and destruction.
    THPlane()
    {
        // uninitialized members
    }

    THPlane(const THPlane& plane)
        :
        mTuple(plane.mTuple)
    {
    }

    ~THPlane()
    {
    }

    // Specify N and c directly.
    THPlane(Real normal0, Real normal1, Real normal2, Real constant)
    {
        mTuple[0] = normal0;
        mTuple[1] = normal1;
        mTuple[2] = normal2;
        mTuple[3] = -constant;
    }

    THPlane(const TAVector<Real>& normal, Real constant)
    {
        mTuple[0] = normal[0];
        mTuple[1] = normal[1];
        mTuple[2] = normal[2];
        mTuple[3] = -constant;
    }

    // N is specified, c = Dot(N,P) where P = (p0,p1,p2,1) is a point on the
    // plane.
    THPlane(const TAVector<Real>& normal, const TAPoint<Real>& p)
    {
        mTuple[0] = normal[0];
        mTuple[1] = normal[1];
        mTuple[2] = normal[2];
        mTuple[3] = -p.Dot(normal);
    }

    // N = Cross(P1-P0,P2-P0)/Length(Cross(P1-P0,P2-P0)), c = Dot(N,P0) where
    // P0, P1, P2 are points on the plane.
    THPlane(const TAPoint<Real>& p0, const TAPoint<Real>& p1, const TAPoint<Real>& p2)
    {
        TAVector<Real> edge1 = p1 - p0;
        TAVector<Real> edge2 = p2 - p0;
        TAVector<Real> normal = edge1.UnitCross(edge2);
        mTuple[0] = normal[0];
        mTuple[1] = normal[1];
        mTuple[2] = normal[2];
        mTuple[3] = -p0.Dot(normal);
    }

    // Specify the entire (n0,n1,n2,-c) tuple.
    THPlane(const THPoint<Real>& tuple)
        :
        mTuple(tuple)
    {
    }

    // Implicit conversion to THPoint<Real>.
    inline operator THPoint<Real>()
    {
        return mTuple;
    }

    inline operator THPoint<Real>() const
    {
        return mTuple;
    }

    // Coordinate access.
    inline operator const Real* () const
    {
        return (const Real*)mTuple;
    }

    inline operator Real* ()
    {
        return (Real*)mTuple;
    }

    inline const Real& operator[] (int i) const
    {
        return mTuple[i];
    }

    inline Real& operator[] (int i)
    {
        return mTuple[i];
    }

    // Assignment.
    THPlane& operator= (const THPlane& plane)
    {
        mTuple = plane.mTuple;
        return *this;
    }

    // Comparison (for use by STL containers).
    bool operator== (const THPlane& plane) const
    {
        for (int i = 0; i < 4; ++i)
        {
            if (mTuple[i] != plane.mTuple[i])
            {
                return false;
            }
        }
        return true;
    }

    bool operator!= (const THPlane& plane) const
    {
        return !operator==(plane);
    }

    bool operator< (const THPlane& plane) const
    {
        // lexicographical ordering
        for (int i = 0; i < 4; ++i)
        {
            if (mTuple[i] < plane.mTuple[i])
            {
                return true;
            }
            if (mTuple[i] > plane.mTuple[i])
            {
                return false;
            }
        }
        return false;
    }

    bool operator<= (const THPlane& plane) const
    {
        // (x <= y) <=> !(y < x)
        return !(plane.operator<(*this));
    }

    bool operator>  (const THPlane& plane) const
    {
        // (x > y) <=> (y < x)
        return plane.operator<(*this);
    }

    bool operator>= (const THPlane& plane) const
    {
        // (x >= y) <=> !(x < y)
        return !operator<(plane);
    }

    // Access to individual components.
    inline void SetNormal(const TAVector<Real>& normal)
    {
        mTuple[0] = normal[0];
        mTuple[1] = normal[1];
        mTuple[2] = normal[2];
    }

    inline void SetConstant(Real constant)
    {
        mTuple[3] = -constant;
    }

    inline TAVector<Real> GetNormal() const
    {
        return TAVector<Real>(mTuple[0], mTuple[1], mTuple[2]);
    }

    inline Real GetConstant() const
    {
        return -mTuple[3];
    }

    // Compute L = Length(n0,n1,n2) and set the plane to (n0,n1,n2,-c)/L.
    // This is useful when transforming planes by homogeneous matrices, where
    // the unit-length normal is not guaranteed.  The function returns L.
    Real Normalize(const Real epsilon = (Real)0)
    {
        Real length = sqrt(mTuple[0] * mTuple[0] + mTuple[1] * mTuple[1] +
            mTuple[2] * mTuple[2]);

        if (length > epsilon)
        {
            Real invLength = (Real)1 / length;
            mTuple[0] *= invLength;
            mTuple[1] *= invLength;
            mTuple[2] *= invLength;
            mTuple[3] *= invLength;
        }

        return length;
    }

    // Compute d = Dot(N,P)-c where N is the plane normal and c is the plane
    // constant.  This is a signed distance.  The sign of the return value is
    // positive if the point is on the positive side of the plane, negative if
    // the point is on the negative side, and zero if the point is on the
    // plane.
    Real DistanceTo(const TAPoint<Real>& p) const
    {
        return mTuple[0] * p[0] + mTuple[1] * p[1] + mTuple[2] * p[2] + mTuple[3];
    }

    // The "positive side" of the plane is the half space to which the plane
    // normal points.  The "negative side" is the other half space.  The
    // function returns +1 when P is on the positive side, -1 when P is on the
    // the negative side, or 0 when P is on the plane.
    int WhichSide(const TAPoint<Real>& p) const
    {
        Real distance = DistanceTo(p);

        if (distance < (Real)0)
        {
            return -1;
        }
        else if (distance >(Real)0)
        {
            return +1;
        }
        else
        {
            return 0;
        }
    }

private:
    // Storage is (n0,n1,n2,-c).
    THPoint<Real> mTuple;
};

}

#endif