1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
|
// Geometric Tools, LLC
// Copyright (c) 1998-2017
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.16.0 (2017/08/24)
#ifndef WM5THQUATERNION_H
#define WM5THQUATERNION_H
#include "Wm5MathematicsLIB.h"
#include "Wm5THMatrix.h"
namespace Wm5
{
template <typename Real>
class THQuaternion
{
public:
// A quaternion is q = w + x*i + y*j + z*k where (w,x,y,z) is not
// necessarily a unit-length vector in 4D.
// Construction.
THQuaternion()
{
// uninitialized members
}
THQuaternion(Real w, Real x, Real y, Real z)
{
mTuple[0] = w;
mTuple[1] = x;
mTuple[2] = y;
mTuple[3] = z;
}
THQuaternion(const THQuaternion& q)
{
mTuple[0] = q.mTuple[0];
mTuple[1] = q.mTuple[1];
mTuple[2] = q.mTuple[2];
mTuple[3] = q.mTuple[3];
}
// THQuaternion for the input rotation matrix.
THQuaternion(const THMatrix<Real>& rot)
{
FromRotationMatrix(rot);
}
// THQuaternion for the rotation of the axis-angle pair.
THQuaternion(const TAVector<Real>& axis, Real angle)
{
FromAxisAngle(axis, angle);
}
// Coordinate access as an array: 0 = w, 1 = x, 2 = y, 3 = z.
inline operator const Real* () const
{
return mTuple;
}
inline operator Real* ()
{
return mTuple;
}
inline const Real& operator[] (int i) const
{
return mTuple[i];
}
inline Real& operator[] (int i)
{
return mTuple[i];
}
inline Real W() const
{
return mTuple[0];
}
inline Real& W()
{
return mTuple[0];
}
inline Real X() const
{
return mTuple[1];
}
inline Real& X()
{
return mTuple[1];
}
inline Real Y() const
{
return mTuple[2];
}
inline Real& Y()
{
return mTuple[2];
}
inline Real Z() const
{
return mTuple[3];
}
inline Real& Z()
{
return mTuple[3];
}
// Assignment.
THQuaternion& operator= (const THQuaternion& q)
{
mTuple[0] = q.mTuple[0];
mTuple[1] = q.mTuple[1];
mTuple[2] = q.mTuple[2];
mTuple[3] = q.mTuple[3];
return *this;
}
// Comparison (for use by STL containers).
bool operator== (const THQuaternion& q) const
{
for (int i = 0; i < 4; ++i)
{
if (mTuple[i] != q.mTuple[i])
{
return false;
}
}
return true;
}
bool operator!= (const THQuaternion& q) const
{
return !operator==(q);
}
bool operator< (const THQuaternion& q) const
{
// lexicographical ordering
for (int i = 0; i < 4; ++i)
{
if (mTuple[i] < q.mTuple[i])
{
return true;
}
if (mTuple[i] > q.mTuple[i])
{
return false;
}
}
return false;
}
bool operator<= (const THQuaternion& q) const
{
// (x <= y) <=> !(y < x)
return !(q.operator<(*this));
}
bool operator> (const THQuaternion& q) const
{
// (x > y) <=> (y < x)
return q.operator<(*this);
}
bool operator>= (const THQuaternion& q) const
{
// (x >= y) <=> !(x < y)
return !operator<(q);
}
// Arithmetic operations.
THQuaternion operator+ (const THQuaternion& q) const
{
THQuaternion result;
for (int i = 0; i < 4; ++i)
{
result.mTuple[i] = mTuple[i] + q.mTuple[i];
}
return result;
}
THQuaternion operator- (const THQuaternion& q) const
{
THQuaternion result;
for (int i = 0; i < 4; ++i)
{
result.mTuple[i] = mTuple[i] - q.mTuple[i];
}
return result;
}
THQuaternion operator* (const THQuaternion& q) const
{
// NOTE: Multiplication is not generally commutative, so in most
// cases p*q != q*p.
THQuaternion result;
result.mTuple[0] =
mTuple[0] * q.mTuple[0] -
mTuple[1] * q.mTuple[1] -
mTuple[2] * q.mTuple[2] -
mTuple[3] * q.mTuple[3];
result.mTuple[1] =
mTuple[0] * q.mTuple[1] +
mTuple[1] * q.mTuple[0] +
mTuple[2] * q.mTuple[3] -
mTuple[3] * q.mTuple[2];
result.mTuple[2] =
mTuple[0] * q.mTuple[2] +
mTuple[2] * q.mTuple[0] +
mTuple[3] * q.mTuple[1] -
mTuple[1] * q.mTuple[3];
result.mTuple[3] =
mTuple[0] * q.mTuple[3] +
mTuple[3] * q.mTuple[0] +
mTuple[1] * q.mTuple[2] -
mTuple[2] * q.mTuple[1];
return result;
}
THQuaternion operator* (Real scalar) const
{
THQuaternion result;
for (int i = 0; i < 4; ++i)
{
result.mTuple[i] = scalar * mTuple[i];
}
return result;
}
THQuaternion operator/ (Real scalar) const
{
THQuaternion result;
for (int i = 0; i < 4; ++i)
{
result.mTuple[i] = mTuple[i] / scalar;
}
return result;
}
THQuaternion operator- () const
{
THQuaternion result;
for (int i = 0; i < 4; ++i)
{
result.mTuple[i] = -mTuple[i];
}
return result;
}
// Arithmetic updates.
THQuaternion& operator+= (const THQuaternion& q)
{
for (int i = 0; i < 4; ++i)
{
mTuple[i] += q.mTuple[i];
}
return *this;
}
THQuaternion& operator-= (const THQuaternion& q)
{
for (int i = 0; i < 4; ++i)
{
mTuple[i] -= q.mTuple[i];
}
return *this;
}
THQuaternion& operator*= (Real scalar)
{
for (int i = 0; i < 4; ++i)
{
mTuple[i] *= scalar;
}
return *this;
}
THQuaternion& operator/= (Real scalar)
{
for (int i = 0; i < 4; ++i)
{
mTuple[i] /= scalar;
}
return *this;
}
// Conversion between quaternions, matrices, and axis-angle.
void FromRotationMatrix(const THMatrix<Real>& rot)
{
// Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
// article "HQuaternion Calculus and Fast Animation".
const int next[3] = { 1, 2, 0 };
Real trace = rot(0, 0) + rot(1, 1) + rot(2, 2);
Real root;
if (trace > (Real)0)
{
// |w| > 1/2, may as well choose w > 1/2
root = sqrt(trace + (Real)1); // 2w
mTuple[0] = ((Real)0.5) * root;
root = ((Real)0.5) / root; // 1/(4w)
mTuple[1] = (rot(2, 1) - rot(1, 2)) * root;
mTuple[2] = (rot(0, 2) - rot(2, 0)) * root;
mTuple[3] = (rot(1, 0) - rot(0, 1)) * root;
}
else
{
// |w| <= 1/2
int i = 0;
if (rot(1, 1) > rot(0, 0))
{
i = 1;
}
if (rot(2, 2) > rot(i, i))
{
i = 2;
}
int j = next[i];
int k = next[j];
root = sqrt(rot(i, i) - rot(j, j) - rot(k, k) + (Real)1);
Real* quat[3] = { &mTuple[1], &mTuple[2], &mTuple[3] };
*quat[i] = ((Real)0.5) * root;
root = ((Real)0.5) / root;
mTuple[0] = (rot(k, j) - rot(j, k)) * root;
*quat[j] = (rot(j, i) + rot(i, j)) * root;
*quat[k] = (rot(k, i) + rot(i, k)) * root;
}
}
void ToRotationMatrix(THMatrix<Real>& rot) const
{
Real twoX = ((Real)2) * mTuple[1];
Real twoY = ((Real)2) * mTuple[2];
Real twoZ = ((Real)2) * mTuple[3];
Real twoWX = twoX * mTuple[0];
Real twoWY = twoY * mTuple[0];
Real twoWZ = twoZ * mTuple[0];
Real twoXX = twoX * mTuple[1];
Real twoXY = twoY * mTuple[1];
Real twoXZ = twoZ * mTuple[1];
Real twoYY = twoY * mTuple[2];
Real twoYZ = twoZ * mTuple[2];
Real twoZZ = twoZ * mTuple[3];
rot(0, 0) = (Real)1 - (twoYY + twoZZ);
rot(0, 1) = twoXY - twoWZ;
rot(0, 2) = twoXZ + twoWY;
rot(0, 3) = (Real)0;
rot(1, 0) = twoXY + twoWZ;
rot(1, 1) = (Real)1 - (twoXX + twoZZ);
rot(1, 2) = twoYZ - twoWX;
rot(1, 3) = (Real)0;
rot(2, 0) = twoXZ - twoWY;
rot(2, 1) = twoYZ + twoWX;
rot(2, 2) = (Real)1 - (twoXX + twoYY);
rot(2, 3) = (Real)0;
rot(3, 0) = (Real)0;
rot(3, 1) = (Real)0;
rot(3, 2) = (Real)0;
rot(3, 3) = (Real)1;
}
void FromAxisAngle(const TAVector<Real>& axis, Real angle)
{
// assert: axis[] is unit length
//
// The quaternion representing the rotation is
// q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k)
Real halfAngle = ((Real)0.5) * angle;
Real sn = sin(halfAngle);
mTuple[0] = cos(halfAngle);
mTuple[1] = sn * axis[0];
mTuple[2] = sn * axis[1];
mTuple[3] = sn * axis[2];
}
void ToAxisAngle(TAVector<Real>& axis, Real& angle) const
{
// The quaternion representing the rotation is
// q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k)
Real sqrLength = mTuple[1] * mTuple[1] + mTuple[2] * mTuple[2]
+ mTuple[3] * mTuple[3];
if (sqrLength > (Real)0)
{
angle = ((Real)2) * acos(mTuple[0]);
Real invLength = ((Real)1) / sqrt(sqrLength);
axis[0] = mTuple[1] * invLength;
axis[1] = mTuple[2] * invLength;
axis[2] = mTuple[3] * invLength;
}
else
{
// Angle is 0 (mod 2*pi), so any axis will do.
angle = (Real)0;
axis[0] = (Real)1;
axis[1] = (Real)0;
axis[2] = (Real)0;
}
}
// Functions of a quaternion.
Real Length() const // length of 4-tuple
{
return sqrt(mTuple[0] * mTuple[0] + mTuple[1] * mTuple[1] +
mTuple[2] * mTuple[2] + mTuple[3] * mTuple[3]);
}
Real SquaredLength() const // squared length of 4-tuple
{
return mTuple[0] * mTuple[0] + mTuple[1] * mTuple[1] +
mTuple[2] * mTuple[2] + mTuple[3] * mTuple[3];
}
Real Dot(const THQuaternion& q) const // dot product of 4-tuples
{
return mTuple[0] * q.mTuple[0] + mTuple[1] * q.mTuple[1] +
mTuple[2] * q.mTuple[2] + mTuple[3] * q.mTuple[3];
}
Real Normalize(const Real epsilon = (Real)0)
{
Real length = Length();
if (length > epsilon)
{
Real invLength = ((Real)1) / length;
mTuple[0] *= invLength;
mTuple[1] *= invLength;
mTuple[2] *= invLength;
mTuple[3] *= invLength;
}
else
{
length = (Real)0;
mTuple[0] = (Real)0;
mTuple[1] = (Real)0;
mTuple[2] = (Real)0;
mTuple[3] = (Real)0;
}
return length;
}
THQuaternion Inverse() const // apply to non-zero quaternion
{
THQuaternion inverse;
Real norm = SquaredLength();
if (norm > (Real)0)
{
Real invNorm = ((Real)1) / norm;
inverse.mTuple[0] = mTuple[0] * invNorm;
inverse.mTuple[1] = -mTuple[1] * invNorm;
inverse.mTuple[2] = -mTuple[2] * invNorm;
inverse.mTuple[3] = -mTuple[3] * invNorm;
}
else
{
// Return an invalid result to flag the error.
for (int i = 0; i < 4; ++i)
{
inverse.mTuple[i] = (Real)0;
}
}
return inverse;
}
THQuaternion Conjugate() const // negate x, y, and z terms
{
return THQuaternion(mTuple[0], -mTuple[1], -mTuple[2], -mTuple[3]);
}
THQuaternion Exp() const // apply to quaternion with w = 0
{
// If q = A*(x*i+y*j+z*k) where (x,y,z) is unit length, then
// exp(q) = cos(A)+sin(A)*(x*i+y*j+z*k). If sin(A) is near zero,
// use exp(q) = cos(A)+A*(x*i+y*j+z*k) since A/sin(A) has limit 1.
THQuaternion result;
Real angle = sqrt(mTuple[1] * mTuple[1] +
mTuple[2] * mTuple[2] + mTuple[3] * mTuple[3]);
Real sn = sin(angle);
result.mTuple[0] = cos(angle);
int i;
if (fabs(sn) > (Real)0)
{
Real coeff = sn / angle;
for (i = 1; i < 4; ++i)
{
result.mTuple[i] = coeff * mTuple[i];
}
}
else
{
for (i = 1; i < 4; ++i)
{
result.mTuple[i] = mTuple[i];
}
}
return result;
}
THQuaternion Log() const // apply to unit-length quaternion
{
// If q = cos(A)+sin(A)*(x*i+y*j+z*k) where (x,y,z) is unit length, then
// log(q) = A*(x*i+y*j+z*k). If sin(A) is near zero, use log(q) =
// sin(A)*(x*i+y*j+z*k) since sin(A)/A has limit 1.
THQuaternion result;
result.mTuple[0] = (Real)0;
int i;
if (fabs(mTuple[0]) < (Real)1)
{
Real angle = acos(mTuple[0]);
Real sn = sin(angle);
if (fabs(sn) > (Real)0)
{
Real coeff = angle / sn;
for (i = 1; i < 4; ++i)
{
result.mTuple[i] = coeff * mTuple[i];
}
return result;
}
}
for (i = 1; i < 4; ++i)
{
result.mTuple[i] = mTuple[i];
}
return result;
}
// Rotation of a vector by a quaternion.
TAVector<Real> Rotate (const TAVector<Real>& vec) const
{
// Given a vector u = (x0,y0,z0) and a unit length quaternion
// q = <w,x,y,z>, the vector v = (x1,y1,z1) which represents the
// rotation of u by q is v = q*u*q^{-1} where * indicates quaternion
// multiplication and where u is treated as the quaternion <0,x0,y0,z0>.
// Note that q^{-1} = <w,-x,-y,-z>, so no real work is required to
// invert q. Now
//
// q*u*q^{-1} = q*<0,x0,y0,z0>*q^{-1}
// = q*(x0*i+y0*j+z0*k)*q^{-1}
// = x0*(q*i*q^{-1})+y0*(q*j*q^{-1})+z0*(q*k*q^{-1})
//
// As 3-vectors, q*i*q^{-1}, q*j*q^{-1}, and 2*k*q^{-1} are the columns
// of the rotation matrix computed in HQuaternion::ToRotationMatrix.
// The vector v is obtained as the product of that rotation matrix with
// vector u. As such, the quaternion representation of a rotation
// matrix requires less space than the matrix and more time to compute
// the rotated vector. Typical space-time tradeoff...
THMatrix<Real> rot;
ToRotationMatrix(rot);
return rot * vec;
}
// Spherical linear interpolation.
THQuaternion& Slerp(Real t, const THQuaternion& p, const THQuaternion& q)
{
Real cs = p.Dot(q);
Real angle = acos(cs);
if (fabs(angle) > (Real)0)
{
Real sn = sin(angle);
Real invSn = ((Real)1) / sn;
Real tAngle = t * angle;
Real coeff0 = sin(angle - tAngle) * invSn;
Real coeff1 = sin(tAngle) * invSn;
mTuple[0] = coeff0 * p.mTuple[0] + coeff1 * q.mTuple[0];
mTuple[1] = coeff0 * p.mTuple[1] + coeff1 * q.mTuple[1];
mTuple[2] = coeff0 * p.mTuple[2] + coeff1 * q.mTuple[2];
mTuple[3] = coeff0 * p.mTuple[3] + coeff1 * q.mTuple[3];
}
else
{
mTuple[0] = p.mTuple[0];
mTuple[1] = p.mTuple[1];
mTuple[2] = p.mTuple[2];
mTuple[3] = p.mTuple[3];
}
return *this;
}
// Intermediate terms for spherical quadratic interpolation.
THQuaternion& Intermediate(const THQuaternion& q0, const THQuaternion& q1,
const THQuaternion& q2)
{
// assert: Q0, Q1, Q2 all unit-length
THQuaternion q1Inv = q1.Conjugate();
THQuaternion p0 = q1Inv * q0;
THQuaternion p2 = q1Inv * q2;
THQuaternion arg = ((Real)-0.25) * (p0.Log() + p2.Log());
THQuaternion a = q1 * arg.Exp();
*this = a;
return *this;
}
// Spherical quadratic interpolation.
THQuaternion& Squad(Real t, const THQuaternion& q0, const THQuaternion& a0,
const THQuaternion& a1, const THQuaternion& q1)
{
Real slerpT = ((Real)2) * t * ((Real)1 - t);
THQuaternion slerpP = Slerp(t, q0, q1);
THQuaternion slerpQ = Slerp(t, a0, a1);
return Slerp(slerpT, slerpP, slerpQ);
}
// Special quaternions.
static const THQuaternion ZERO()
{
return THQuaternion((Real)0, (Real)0, (Real)0, (Real)0);
}
static const THQuaternion IDENTITY()
{
return THQuaternion((Real)1, (Real)0, (Real)0, (Real)0);
}
private:
// Order of storage is (w,x,y,z).
Real mTuple[4];
};
template <typename Real>
THQuaternion<Real> operator* (Real scalar, const THQuaternion<Real>& q)
{
return q * scalar;
}
}
#endif
|