File: Wm5ApprGreatCircleFit3.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 90,124 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 40
file content (142 lines) | stat: -rw-r--r-- 5,093 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)

#include "Wm5MathematicsPCH.h"
#include "Wm5ApprGreatCircleFit3.h"
#include "Wm5EigenDecomposition.h"

namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
Vector3<Real> GreatCircleFit3 (int numPoints, const Vector3<Real>* points)
{
    // Compute the covariance matrix of the vectors.
    Real sumXX = (Real)0, sumXY = (Real)0, sumXZ = (Real)0;
    Real sumYY = (Real)0, sumYZ = (Real)0, sumZZ = (Real)0;
    for (int i = 0; i < numPoints; i++) 
    {
        Vector3<Real> diff = points[i];
        sumXX += diff[0]*diff[0];
        sumXY += diff[0]*diff[1];
        sumXZ += diff[0]*diff[2];
        sumYY += diff[1]*diff[1];
        sumYZ += diff[1]*diff[2];
        sumZZ += diff[2]*diff[2];
    }

    Real invNumPoints = ((Real)1)/numPoints;
    sumXX *= invNumPoints;
    sumXY *= invNumPoints;
    sumXZ *= invNumPoints;
    sumYY *= invNumPoints;
    sumYZ *= invNumPoints;
    sumZZ *= invNumPoints;

    // Set up the eigensolver.
    EigenDecomposition<Real> esystem(3);
    esystem(0,0) = sumXX;
    esystem(0,1) = sumXY;
    esystem(0,2) = sumXZ;
    esystem(1,0) = esystem(0,1);
    esystem(1,1) = sumYY;
    esystem(1,2) = sumYZ;
    esystem(2,0) = esystem(0,2);
    esystem(2,1) = esystem(1,2);
    esystem(2,2) = sumZZ;

    // Compute eigenstuff; the smallest eigenvalue is in last position.
    esystem.Solve(false);

    // Unit-length direction for best-fit great circle.
    Vector3<Real> normal = esystem.GetEigenvector3(2);
    return normal;
}
//----------------------------------------------------------------------------
template <typename Real>
GreatArcFit3<Real>::GreatArcFit3 (int numPoints,
    const Vector3<Real>* points, Vector3<Real>& normal,
    Vector3<Real>& arcEnd0, Vector3<Real>& arcEnd1)
{
    // Get the least-squares great circle for the vectors.  The circle is on
    // the plane Dot(N,X) = 0.
    normal = GreatCircleFit3<Real>(numPoints, points);

    // Compute a coordinate system to allow projection of the vectors onto
    // the great circle.  The coordinates axes have directions U, V, and N.
    Vector3<Real> U, V;
    Vector3<Real>::GenerateComplementBasis(U, V, normal);

    // The vectors are X[i] = u[i]*U + v[i]*V + w[i]*N.  The projections
    // are P[i] = (u[i]*U + v[i]*V)/sqrt(u[i]*u[i] + v[i]*v[i]).  The great
    // circle is parameterized by C(t) = cos(t)*U + sin(t)*V.  Compute the
    // angles t in [-pi,pi] for the projections onto the great circle.  It
    // is not necesarily to normalize (u[i],v[i]), instead computing
    // t = atan2(v[i],u[i]).
    std::vector<Item> items(numPoints);
    int i;
    for (i = 0; i < numPoints; ++i)
    {
        Item& item = items[i];
        item.U = U.Dot(points[i]);
        item.V = V.Dot(points[i]);
        item.Angle = Math<Real>::ATan2(item.V, item.U);
    }
    std::sort(items.begin(), items.end());

    // Locate the pair of consecutive angles whose difference is a maximum.
    // Effectively, we are constructing a cone of minimum angle that contains
    // the unit-length vectors.
    int numPointsM1 = numPoints - 1;
    Real maxDiff = Math<Real>::TWO_PI + items[0].Angle -
        items[numPointsM1].Angle;
    int end0 = 0, end1 = numPointsM1;
    for (int i0 = 0, i1 = 1; i0 < numPointsM1; i0 = i1++)
    {
        Real diff = items[i1].Angle - items[i0].Angle;
        if (diff > maxDiff)
        {
            maxDiff = diff;
            end0 = i1;
            end1 = i0;
        }
    }

    arcEnd0 = items[end0].U*U + items[end0].V*V;
    arcEnd1 = items[end1].U*U + items[end1].V*V;
    arcEnd0.Normalize();
    arcEnd1.Normalize();
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// GreatArcFit3::Item
//----------------------------------------------------------------------------
template <typename Real>
bool GreatArcFit3<Real>::Item::operator< (const Item& item) const
{
    return Angle < item.Angle;
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
Vector3<float> GreatCircleFit3<float> (int, const Vector3<float>*);

template WM5_MATHEMATICS_ITEM
class GreatArcFit3<float>;

template WM5_MATHEMATICS_ITEM
Vector3<double> GreatCircleFit3<double> (int, const Vector3<double>*);

template WM5_MATHEMATICS_ITEM
class GreatArcFit3<double>;
//----------------------------------------------------------------------------
}