1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5ApprQuadraticFit2.h"
#include "Wm5EigenDecomposition.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
Real QuadraticFit2 (int numPoints, const Vector2<Real>* points,
Real coeff[6])
{
EigenDecomposition<Real> esystem(6);
int row, col;
for (row = 0; row < 6; ++row)
{
for (col = 0; col < 6; ++col)
{
esystem(row,col) = (Real)0;
}
}
for (int i = 0; i < numPoints; ++i)
{
Real x = points[i].X();
Real y = points[i].Y();
Real x2 = x*x;
Real y2 = y*y;
Real xy = x*y;
Real x3 = x*x2;
Real xy2 = x*y2;
Real x2y = x*xy;
Real y3 = y*y2;
Real x4 = x*x3;
Real x2y2 = x*xy2;
Real x3y = x*x2y;
Real y4 = y*y3;
Real xy3 = x*y3;
esystem(0,1) += x;
esystem(0,2) += y;
esystem(0,3) += x2;
esystem(0,4) += y2;
esystem(0,5) += xy;
esystem(1,3) += x3;
esystem(1,4) += xy2;
esystem(1,5) += x2y;
esystem(2,4) += y3;
esystem(3,3) += x4;
esystem(3,4) += x2y2;
esystem(3,5) += x3y;
esystem(4,4) += y4;
esystem(4,5) += xy3;
}
esystem(0,0) = (Real)numPoints;
esystem(1,1) = esystem(0,3);
esystem(1,2) = esystem(0,5);
esystem(2,2) = esystem(0,4);
esystem(2,3) = esystem(1,5);
esystem(2,5) = esystem(1,4);
esystem(5,5) = esystem(3,4);
for (row = 0; row < 6; ++row)
{
for (col = 0; col < row; ++col)
{
esystem(row,col) = esystem(col,row);
}
}
Real invNumPoints = ((Real)1)/(Real)numPoints;
for (row = 0; row < 6; ++row)
{
for (col = 0; col < 6; ++col)
{
esystem(row,col) *= invNumPoints;
}
}
esystem.Solve(true);
GVector<Real> evector = esystem.GetEigenvector(0);
memcpy(coeff, (Real*)evector, 6*sizeof(Real));
// For an exact fit, numeric round-off errors might make the minimum
// eigenvalue just slightly negative. Return the absolute value since
// the application might rely on the return value being nonnegative.
return Math<Real>::FAbs(esystem.GetEigenvalue(0));
}
//----------------------------------------------------------------------------
template <typename Real>
Real QuadraticCircleFit2 (int numPoints, const Vector2<Real>* points,
Vector2<Real>& center, Real& radius)
{
EigenDecomposition<Real> esystem(4);
int row, col;
for (row = 0; row < 4; ++row)
{
for (col = 0; col < 4; ++col)
{
esystem(row,col) = (Real)0;
}
}
for (int i = 0; i < numPoints; ++i)
{
Real x = points[i].X();
Real y = points[i].Y();
Real x2 = x*x;
Real y2 = y*y;
Real xy = x*y;
Real r2 = x2+y2;
Real xr2 = x*r2;
Real yr2 = y*r2;
Real r4 = r2*r2;
esystem(0,1) += x;
esystem(0,2) += y;
esystem(0,3) += r2;
esystem(1,1) += x2;
esystem(1,2) += xy;
esystem(1,3) += xr2;
esystem(2,2) += y2;
esystem(2,3) += yr2;
esystem(3,3) += r4;
}
esystem(0,0) = (Real)numPoints;
for (row = 0; row < 4; ++row)
{
for (col = 0; col < row; ++col)
{
esystem(row,col) = esystem(col,row);
}
}
Real invNumPoints = ((Real)1)/(Real)numPoints;
for (row = 0; row < 4; ++row)
{
for (col = 0; col < 4; ++col)
{
esystem(row,col) *= invNumPoints;
}
}
esystem.Solve(true);
GVector<Real> evector = esystem.GetEigenvector(0);
Real inv = ((Real)1)/evector[3]; // beware zero divide
Real coeff[3];
for (row = 0; row < 3; ++row)
{
coeff[row] = inv*evector[row];
}
center[0] = -((Real)0.5)*coeff[1];
center[1] = -((Real)0.5)*coeff[2];
radius = Math<Real>::Sqrt(Math<Real>::FAbs(center[0]*center[0] +
center[1]*center[1] - coeff[0]));
// For an exact fit, numeric round-off errors might make the minimum
// eigenvalue just slightly negative. Return the absolute value since
// the application might rely on the return value being nonnegative.
return Math<Real>::FAbs(esystem.GetEigenvalue(0));
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
float QuadraticFit2<float> (int, const Vector2<float>*, float[6]);
template WM5_MATHEMATICS_ITEM
float QuadraticCircleFit2<float> (int, const Vector2<float>*,
Vector2<float>&, float&);
template WM5_MATHEMATICS_ITEM
double QuadraticFit2<double> (int, const Vector2<double>*, double[6]);
template WM5_MATHEMATICS_ITEM
double QuadraticCircleFit2<double> (int, const Vector2<double>*,
Vector2<double>&, double&);
//----------------------------------------------------------------------------
}
|