1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5ContEllipse2MinCR.h"
#include "Wm5Memory.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
ContEllipse2MinCR<Real>::ContEllipse2MinCR (int numPoints,
const Vector2<Real>* points, const Vector2<Real>& C,
const Matrix2<Real>& R, Real D[2])
{
// Compute the constraint coefficients, of the form (A[0],A[1]) for
// each i.
std::vector<Vector2<Real> > A(numPoints);
for (int i = 0; i < numPoints; ++i)
{
Vector2<Real> diff = points[i] - C; // P[i] - C
Vector2<Real> prod = diff*R; // R^T*(P[i] - C) = (u,v)
A[i].X() = prod.X()*prod.X(); // u^2
A[i].Y() = prod.Y()*prod.Y(); // v^2
}
// Sort to eliminate redundant constraints.
typename std::vector<Vector2<Real> >::iterator end;
// Lexicographical sort, (x0,y0) > (x1,y1) if x0 > x1 or if x0 = x1 and
// y0 > y1. Remove all but first entry in blocks with x0 = x1 since the
// corresponding constraint lines for the first entry "hides" all the
// others from the origin.
std::sort(A.begin(), A.end(), XGreater);
end = std::unique(A.begin(), A.end(), XEqual);
A.erase(end, A.end());
// Lexicographical sort, (x0,y0) > (x1,y1) if y0 > y1 or if y0 = y1 and
// x0 > x1. Remove all but first entry in blocks with y0 = y1 since the
// corresponding constraint lines for the first entry "hides" all the
// others from the origin.
std::sort(A.begin(), A.end(), YGreater);
end = std::unique(A.begin(), A.end(), YEqual);
A.erase(end, A.end());
MaxProduct(A, D);
}
//----------------------------------------------------------------------------
template <typename Real>
bool ContEllipse2MinCR<Real>::XGreater (const Vector2<Real>& P0,
const Vector2<Real>& P1)
{
if (P0.X() > P1.X())
{
return true;
}
if (P0.X() < P1.X())
{
return false;
}
return P0.Y() > P1.Y();
}
//----------------------------------------------------------------------------
template <typename Real>
bool ContEllipse2MinCR<Real>::XEqual (const Vector2<Real>& P0,
const Vector2<Real>& P1)
{
return P0.X() == P1.X();
}
//----------------------------------------------------------------------------
template <typename Real>
bool ContEllipse2MinCR<Real>::YGreater (const Vector2<Real>& P0,
const Vector2<Real>& P1)
{
if (P0.Y() > P1.Y())
{
return true;
}
if (P0.Y() < P1.Y())
{
return false;
}
return P0.X() > P1.X();
}
//----------------------------------------------------------------------------
template <typename Real>
bool ContEllipse2MinCR<Real>::YEqual (const Vector2<Real>& P0,
const Vector2<Real>& P1)
{
return P0.Y() == P1.Y();
}
//----------------------------------------------------------------------------
template <typename Real>
void ContEllipse2MinCR<Real>::MaxProduct (std::vector<Vector2<Real> >& A,
Real D[2])
{
// Keep track of which constraint lines have already been used in the
// search.
int numConstraints = (int)A.size();
bool* used = new1<bool>(numConstraints);
memset(used, 0, numConstraints*sizeof(bool));
// Find the constraint line whose y-intercept (0,ymin) is closest to the
// origin. This line contributes to the convex hull of the constraints
// and the search for the maximum starts here. Also find the constraint
// line whose x-intercept (xmin,0) is closest to the origin. This line
// contributes to the convex hull of the constraints and the search for
// the maximum terminates before or at this line.
int i, iYMin = -1;
int iXMin = -1;
Real axMax = (Real)0, ayMax = (Real)0; // A[i] >= (0,0) by design
for (i = 0; i < numConstraints; ++i)
{
// The minimum x-intercept is 1/A[iXMin].X() for A[iXMin].X() the
// maximum of the A[i].X().
if (A[i].X() > axMax)
{
axMax = A[i].X();
iXMin = i;
}
// The minimum y-intercept is 1/A[iYMin].Y() for A[iYMin].Y() the
// maximum of the A[i].Y().
if (A[i].Y() > ayMax)
{
ayMax = A[i].Y();
iYMin = i;
}
}
assertion(iXMin != -1 && iYMin != -1, "Unexpected condition\n");
WM5_UNUSED(iXMin);
used[iYMin] = true;
// The convex hull is searched in a clockwise manner starting with the
// constraint line constructed above. The next vertex of the hull occurs
// as the closest point to the first vertex on the current constraint
// line. The following loop finds each consecutive vertex.
Real x0 = (Real)0, xMax = ((Real)1)/axMax;
int j;
for (j = 0; j < numConstraints; ++j)
{
// Find the line whose intersection with the current line is closest
// to the last hull vertex. The last vertex is at (x0,y0) on the
// current line.
Real x1 = xMax;
int line = -1;
for (i = 0; i < numConstraints; ++i)
{
if (!used[i])
{
// This line not yet visited, process it. Given current
// constraint line a0*x+b0*y =1 and candidate line
// a1*x+b1*y = 1, find the point of intersection. The
// determinant of the system is d = a0*b1-a1*b0. We only
// care about lines that have more negative slope than the
// previous one, that is, -a1/b1 < -a0/b0, in which case we
// process only lines for which d < 0.
Real det = A[iYMin].DotPerp(A[i]);
if (det < (Real)0) // TO DO. Need epsilon test here?
{
// Compute the x-value for the point of intersection,
// (x1,y1). There may be floating point error issues in
// the comparision 'D[0] <= fX1'. Consider modifying to
// 'D[0] <= fX1+epsilon'.
D[0] = (A[i].Y() - A[iYMin].Y())/det;
if (x0 < D[0] && D[0] <= x1)
{
line = i;
x1 = D[0];
}
}
}
}
// Next vertex is at (x1,y1) whose x-value was computed above. First
// check for the maximum of x*y on the current line for x in [x0,x1].
// On this interval the function is f(x) = x*(1-a0*x)/b0. The
// derivative is f'(x) = (1-2*a0*x)/b0 and f'(r) = 0 when
// r = 1/(2*a0). The three candidates for the maximum are f(x0),
// f(r), and f(x1). Comparisons are made between r and the end points
// x0 and x1. Since a0 = 0 is possible (constraint line is horizontal
// and f is increasing on line), the division in r is not performed
// and the comparisons are made between 1/2 = a0*r and a0*x0 or a0*x1.
// Compare r < x0.
if ((Real)0.5 < A[iYMin].X()*x0)
{
// The maximum is f(x0) since the quadratic f decreases for
// x > r.
D[0] = x0;
D[1] = ((Real)1 - A[iYMin].X()*D[0])/A[iYMin].Y(); // = f(x0)
break;
}
// Compare r < x1.
if ((Real)0.5 < A[iYMin].X()*x1)
{
// The maximum is f(r). The search ends here because the
// current line is tangent to the level curve of f(x)=f(r)
// and x*y can therefore only decrease as we traverse further
// around the hull in the clockwise direction.
D[0] = ((Real)0.5)/A[iYMin].X();
D[1] = ((Real)0.5)/A[iYMin].Y(); // = f(r)
break;
}
// The maximum is f(x1). The function x*y is potentially larger
// on the next line, so continue the search.
assertion(line != -1, "Unexpected condition\n");
x0 = x1;
x1 = xMax;
used[line] = true;
iYMin = line;
}
assertion(j < numConstraints, "Unexpected condition\n");
delete1(used);
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class ContEllipse2MinCR<float>;
template WM5_MATHEMATICS_ITEM
class ContEllipse2MinCR<double>;
//----------------------------------------------------------------------------
}
|