1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5ContEllipsoid3.h"
#include "Wm5ApprGaussPointsFit3.h"
#include "Wm5Quaternion.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
Ellipsoid3<Real> ContEllipsoid (int numPoints, const Vector3<Real>* points)
{
// Fit the points with a Gaussian distribution. The covariance matrix
// is M = D[0]*U[0]*U[0]^T+D[1]*U[1]*U[1]^T+D[2]*U[2]*U[2]^T where D[0],
// D[1], and D[2] are the eigenvalues and U[0], U[1], and U[2] are
// corresponding unit-length eigenvectors.
Box3<Real> box = GaussPointsFit3(numPoints, points);
Real* diag = box.Extent;
Vector3<Real>* axis = box.Axis;
// If either eigenvalue is nonpositive, adjust the D[] values so that
// we actually build an ellipse.
int i;
for (i = 0; i < 3; ++i)
{
if (diag[i] < (Real)0)
{
diag[i] = -diag[i];
}
if (diag[i] < Math<Real>::ZERO_TOLERANCE)
{
diag[i] = Math<Real>::ZERO_TOLERANCE;
}
}
// Grow the ellipsoid, while retaining its shape determined by the
// covariance matrix, to enclose all the input points. The quadratic form
// that is used for the ellipsoid construction is
//
// Q(X) = (X-C)^T*M*(X-C)
// = (X-C)^T*(sum_{j=0}^2 U[j]*U[j]^T/D[j])*(X-C)
// = sum_{j=0}^2 Dot(U[i],X-C)^2/D[j]
//
// If the maximum value of Q(X[i]) for all input points is V^2, then a
// bounding ellipsoid is Q(X) = V^2 since Q(X[i]) <= V^2 for all i.
Real maxValue = (Real)0;
for (i = 0; i < numPoints; ++i)
{
Vector3<Real> diff = points[i] - box.Center;
Real dot[3] =
{
axis[0].Dot(diff),
axis[1].Dot(diff),
axis[2].Dot(diff)
};
Real value = dot[0]*dot[0]/diag[0] + dot[1]*dot[1]/diag[1] +
dot[2]*dot[2]/diag[2];
if (value > maxValue)
{
maxValue = value;
}
}
// Arrange for quadratic to satisfy Q(X) <= 1.
for (i = 0; i < 3; ++i)
{
diag[i] *= maxValue;
}
Ellipsoid3<Real> ellipsoid;
ellipsoid.Center = box.Center;
for (i = 0; i < 3; ++i)
{
ellipsoid.Axis[i] = axis[i];
ellipsoid.Extent[i] = Math<Real>::Sqrt(diag[i]);
}
return ellipsoid;
}
//----------------------------------------------------------------------------
template <typename Real>
void ProjectEllipsoid (const Ellipsoid3<Real>& ellipsoid,
const Line3<Real>& line, Real& smin, Real& smax)
{
// Center of projection interval.
Real center = line.Direction.Dot(ellipsoid.Center - line.Origin);
// Radius of projection interval.
Real tmp[3] =
{
ellipsoid.Extent[0]*(line.Direction.Dot(ellipsoid.Axis[0])),
ellipsoid.Extent[1]*(line.Direction.Dot(ellipsoid.Axis[1])),
ellipsoid.Extent[2]*(line.Direction.Dot(ellipsoid.Axis[2]))
};
Real rSqr = tmp[0]*tmp[0] + tmp[1]*tmp[1] + tmp[2]*tmp[2];
Real radius = Math<Real>::Sqrt(rSqr);
smin = center - radius;
smax = center + radius;
}
//----------------------------------------------------------------------------
template <typename Real>
const Ellipsoid3<Real> MergeEllipsoids (const Ellipsoid3<Real>& ellipsoid0,
const Ellipsoid3<Real>& ellipsoid1)
{
Ellipsoid3<Real> merge;
// compute the average of the input centers
merge.Center = ((Real)0.5)*(ellipsoid0.Center + ellipsoid1.Center);
// bounding ellipsoid orientation is average of input orientations
Quaternion<Real> q0(ellipsoid0.Axis), q1(ellipsoid1.Axis);
if (q0.Dot(q1) < (Real)0)
{
q1 = -q1;
}
Quaternion<Real> q = q0 + q1;
q = Math<Real>::InvSqrt(q.Dot(q))*q;
q.ToRotationMatrix(merge.Axis);
// Project the input ellipsoids onto the axes obtained by the average
// of the orientations and that go through the center obtained by the
// average of the centers.
for (int i = 0; i < 3; ++i)
{
// Projection axis.
Line3<Real> line(merge.Center, merge.Axis[i]);
// Project ellipsoids onto the axis.
Real min0, max0, min1, max1;
ProjectEllipsoid(ellipsoid0, line, min0, max0);
ProjectEllipsoid(ellipsoid1, line, min1, max1);
// Determine the smallest interval containing the projected
// intervals.
Real maxIntr = (max0 >= max1 ? max0 : max1);
Real minIntr = (min0 <= min1 ? min0 : min1);
// Update the average center to be the center of the bounding box
// defined by the projected intervals.
merge.Center += line.Direction*(((Real)0.5)*(minIntr + maxIntr));
// Compute the extents of the box based on the new center.
merge.Extent[i] = ((Real)0.5)*(maxIntr - minIntr);
}
return merge;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
Ellipsoid3<float> ContEllipsoid<float> (int, const Vector3<float>*);
template WM5_MATHEMATICS_ITEM
void ProjectEllipsoid<float> (const Ellipsoid3<float>&,
const Line3<float>&, float&, float&);
template WM5_MATHEMATICS_ITEM
const Ellipsoid3<float> MergeEllipsoids<float> (const Ellipsoid3<float>&,
const Ellipsoid3<float>&);
template WM5_MATHEMATICS_ITEM
Ellipsoid3<double> ContEllipsoid<double> (int, const Vector3<double>*);
template WM5_MATHEMATICS_ITEM
void ProjectEllipsoid<double> (const Ellipsoid3<double>&,
const Line3<double>&, double&, double&);
template WM5_MATHEMATICS_ITEM
const Ellipsoid3<double> MergeEllipsoids<double> (const Ellipsoid3<double>&,
const Ellipsoid3<double>&);
//----------------------------------------------------------------------------
}
|