1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5ContMinBox3.h"
#include "Wm5ContMinBox2.h"
#include "Wm5ConvexHull3.h"
#include "Wm5EdgeKey.h"
#include "Wm5Memory.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
MinBox3<Real>::MinBox3 (int numPoints, const Vector3<Real>* points,
Real epsilon, Query::Type queryType)
{
// Get the convex hull of the points.
ConvexHull3<Real> kHull(numPoints,(Vector3<Real>*)points, epsilon, false,
queryType);
int hullDim = kHull.GetDimension();
if (hullDim == 0)
{
mMinBox.Center = points[0];
mMinBox.Axis[0] = Vector3<Real>::UNIT_X;
mMinBox.Axis[1] = Vector3<Real>::UNIT_Y;
mMinBox.Axis[2] = Vector3<Real>::UNIT_Z;
mMinBox.Extent[0] = (Real)0;
mMinBox.Extent[1] = (Real)0;
mMinBox.Extent[2] = (Real)0;
return;
}
if (hullDim == 1)
{
ConvexHull1<Real>* pkHull1 = kHull.GetConvexHull1();
const int* hullIndices = pkHull1->GetIndices();
mMinBox.Center =
((Real)0.5)*(points[hullIndices[0]] + points[hullIndices[1]]);
Vector3<Real> diff =
points[hullIndices[1]] - points[hullIndices[0]];
mMinBox.Extent[0] = ((Real)0.5)*diff.Normalize();
mMinBox.Extent[1] = (Real)0;
mMinBox.Extent[2] = (Real)0;
mMinBox.Axis[0] = diff;
Vector3<Real>::GenerateComplementBasis(mMinBox.Axis[1],
mMinBox.Axis[2], mMinBox.Axis[0]);
delete0(pkHull1);
return;
}
int i, j;
Vector3<Real> origin, diff, U, V, W;
Vector2<Real>* points2;
Box2<Real> box2;
if (hullDim == 2)
{
// When ConvexHull3 reports that the point set is 2-dimensional, the
// caller is responsible for projecting the points onto a plane and
// calling ConvexHull2. ConvexHull3 does provide information about
// the plane of the points. In this application, we need only
// project the input points onto that plane and call ContMinBox in
// two dimensions.
// Get a coordinate system relative to the plane of the points.
origin = kHull.GetPlaneOrigin();
W = kHull.GetPlaneDirection(0).Cross(kHull.GetPlaneDirection(1));
Vector3<Real>::GenerateComplementBasis(U, V, W);
// Project the input points onto the plane.
points2 = new1<Vector2<Real> >(numPoints);
for (i = 0; i < numPoints; ++i)
{
diff = points[i] - origin;
points2[i].X() = U.Dot(diff);
points2[i].Y() = V.Dot(diff);
}
// Compute the minimum area box in 2D.
box2 = MinBox2<Real>(numPoints, points2, epsilon, queryType, false);
delete1(points2);
// Lift the values into 3D.
mMinBox.Center = origin + box2.Center.X()*U + box2.Center.Y()*V;
mMinBox.Axis[0] = box2.Axis[0].X()*U + box2.Axis[0].Y()*V;
mMinBox.Axis[1] = box2.Axis[1].X()*U + box2.Axis[1].Y()*V;
mMinBox.Axis[2] = W;
mMinBox.Extent[0] = box2.Extent[0];
mMinBox.Extent[1] = box2.Extent[1];
mMinBox.Extent[2] = (Real)0;
return;
}
int hullQuantity = kHull.GetNumSimplices();
const int* hullIndices = kHull.GetIndices();
Real volume, minVolume = Math<Real>::MAX_REAL;
// Create the unique set of hull vertices to minimize the time spent
// projecting vertices onto planes of the hull faces.
std::set<int> uniqueIndices;
for (i = 0; i < 3*hullQuantity; ++i)
{
uniqueIndices.insert(hullIndices[i]);
}
// Use the rotating calipers method on the projection of the hull onto
// the plane of each face. Also project the hull onto the normal line
// of each face. The minimum area box in the plane and the height on
// the line produce a containing box. If its volume is smaller than the
// current volume, this box is the new candidate for the minimum volume
// box. The unique edges are accumulated into a set for use by a later
// step in the algorithm.
const int* currentHullIndex = hullIndices;
Real height, minHeight, maxHeight;
std::set<EdgeKey> edges;
points2 = new1<Vector2<Real> >(uniqueIndices.size());
for (i = 0; i < hullQuantity; ++i)
{
// Get the triangle.
int v0 = *currentHullIndex++;
int v1 = *currentHullIndex++;
int v2 = *currentHullIndex++;
// Save the edges for later use.
edges.insert(EdgeKey(v0, v1));
edges.insert(EdgeKey(v1, v2));
edges.insert(EdgeKey(v2, v0));
// Get 3D coordinate system relative to plane of triangle.
origin = (points[v0] + points[v1] + points[v2])/(Real)3.0;
Vector3<Real> edge1 = points[v1] - points[v0];
Vector3<Real> edge2 = points[v2] - points[v0];
W = edge2.UnitCross(edge1); // inner-pointing normal
if (W == Vector3<Real>::ZERO)
{
// The triangle is needle-like, so skip it.
continue;
}
Vector3<Real>::GenerateComplementBasis(U, V, W);
// Project points onto plane of triangle, onto normal line of plane.
// TO DO. In theory, minHeight should be zero since W points to the
// interior of the hull. However, the snap rounding used in the 3D
// convex hull finder involves loss of precision, which in turn can
// cause a hull facet to have the wrong ordering (clockwise instead
// of counterclockwise when viewed from outside the hull). The
// height calculations here trap that problem (the incorrectly ordered
// face will not affect the minimum volume box calculations).
minHeight = (Real)0;
maxHeight = (Real)0;
j = 0;
std::set<int>::const_iterator iter = uniqueIndices.begin();
while (iter != uniqueIndices.end())
{
int index = *iter++;
diff = points[index] - origin;
points2[j].X() = U.Dot(diff);
points2[j].Y() = V.Dot(diff);
height = W.Dot(diff);
if (height > maxHeight)
{
maxHeight = height;
}
else if (height < minHeight)
{
minHeight = height;
}
j++;
}
if (-minHeight > maxHeight)
{
maxHeight = -minHeight;
}
// Compute minimum area box in 2D.
box2 = MinBox2<Real>((int)uniqueIndices.size(), points2, epsilon,
queryType, false);
// Update current minimum-volume box (if necessary).
volume = maxHeight*box2.Extent[0]*box2.Extent[1];
if (volume < minVolume)
{
minVolume = volume;
// Lift the values into 3D.
mMinBox.Extent[0] = box2.Extent[0];
mMinBox.Extent[1] = box2.Extent[1];
mMinBox.Extent[2] = ((Real)0.5)*maxHeight;
mMinBox.Axis[0] = box2.Axis[0].X()*U + box2.Axis[0].Y()*V;
mMinBox.Axis[1] = box2.Axis[1].X()*U + box2.Axis[1].Y()*V;
mMinBox.Axis[2] = W;
mMinBox.Center = origin + box2.Center.X()*U + box2.Center.Y()*V
+ mMinBox.Extent[2]*W;
}
}
// The minimum-volume box can also be supported by three mutually
// orthogonal edges of the convex hull. For each triple of orthogonal
// edges, compute the minimum-volume box for that coordinate frame by
// projecting the points onto the axes of the frame.
std::set<EdgeKey>::const_iterator e2iter;
for (e2iter = edges.begin(); e2iter != edges.end(); e2iter++)
{
W = points[e2iter->V[1]] - points[e2iter->V[0]];
W.Normalize();
std::set<EdgeKey>::const_iterator e1iter = e2iter;
for (++e1iter; e1iter != edges.end(); e1iter++)
{
V = points[e1iter->V[1]] - points[e1iter->V[0]];
V.Normalize();
Real dot = V.Dot(W);
if (Math<Real>::FAbs(dot) > Math<Real>::ZERO_TOLERANCE)
{
continue;
}
std::set<EdgeKey>::const_iterator e0iter = e1iter;
for (++e0iter; e0iter != edges.end(); e0iter++)
{
U = points[e0iter->V[1]] - points[e0iter->V[0]];
U.Normalize();
dot = U.Dot(V);
if (Math<Real>::FAbs(dot) > Math<Real>::ZERO_TOLERANCE)
{
continue;
}
dot = U.Dot(W);
if (Math<Real>::FAbs(dot) > Math<Real>::ZERO_TOLERANCE)
{
continue;
}
// The three edges are mutually orthogonal. Project the
// hull points onto the lines containing the edges. Use
// hull point zero as the origin.
Real umin = (Real)0, umax = (Real)0;
Real vmin = (Real)0, vmax = (Real)0;
Real wmin = (Real)0, wmax = (Real)0;
origin = points[hullIndices[0]];
std::set<int>::const_iterator iter = uniqueIndices.begin();
while (iter != uniqueIndices.end())
{
int index = *iter++;
diff = points[index] - origin;
Real fU = U.Dot(diff);
if (fU < umin)
{
umin = fU;
}
else if (fU > umax)
{
umax = fU;
}
Real fV = V.Dot(diff);
if (fV < vmin)
{
vmin = fV;
}
else if (fV > vmax)
{
vmax = fV;
}
Real fW = W.Dot(diff);
if (fW < wmin)
{
wmin = fW;
}
else if (fW > wmax)
{
wmax = fW;
}
}
Real uExtent = ((Real)0.5)*(umax - umin);
Real vExtent = ((Real)0.5)*(vmax - vmin);
Real wExtent = ((Real)0.5)*(wmax - wmin);
// Update current minimum-volume box (if necessary).
volume = uExtent*vExtent*wExtent;
if (volume < minVolume)
{
minVolume = volume;
mMinBox.Extent[0] = uExtent;
mMinBox.Extent[1] = vExtent;
mMinBox.Extent[2] = wExtent;
mMinBox.Axis[0] = U;
mMinBox.Axis[1] = V;
mMinBox.Axis[2] = W;
mMinBox.Center = origin +
((Real)0.5)*(umin+umax)*U +
((Real)0.5)*(vmin+vmax)*V +
((Real)0.5)*(wmin+wmax)*W;
}
}
}
}
delete1(points2);
}
//----------------------------------------------------------------------------
template <typename Real>
MinBox3<Real>::operator Box3<Real> () const
{
return mMinBox;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class MinBox3<float>;
template WM5_MATHEMATICS_ITEM
class MinBox3<double>;
//----------------------------------------------------------------------------
}
|