1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.4 (2015/11/21)
#include "Wm5MathematicsPCH.h"
#include "Wm5ContMinCircle2.h"
#include "Wm5Memory.h"
// All internal minimal circle calculations store the squared radius in the
// radius member of Circle2. Only at the end is a sqrt computed.
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
MinCircle2<Real>::MinCircle2 (int numPoints, const Vector2<Real>* points,
Circle2<Real>& minimal, Real epsilon)
:
mEpsilon(epsilon)
{
mUpdate[0] = 0;
mUpdate[1] = &MinCircle2<Real>::UpdateSupport1;
mUpdate[2] = &MinCircle2<Real>::UpdateSupport2;
mUpdate[3] = &MinCircle2<Real>::UpdateSupport3;
Support support;
Real distDiff;
if (numPoints >= 1)
{
// Create identity permutation (0,1,...,numPoints-1).
Vector2<Real>** permuted = new1<Vector2<Real>*>(numPoints);
int i;
for (i = 0; i < numPoints; ++i)
{
permuted[i] = (Vector2<Real>*)&points[i];
}
// Generate random permutation.
for (i = numPoints - 1; i > 0; --i)
{
int j = rand() % (i+1);
if (j != i)
{
Vector2<Real>* save = permuted[i];
permuted[i] = permuted[j];
permuted[j] = save;
}
}
minimal = ExactCircle1(*permuted[0]);
support.Quantity = 1;
support.Index[0] = 0;
// The previous version of the processing loop is
// i = 1;
// while (i < numPoints)
// {
// if (!support.Contains(i, permuted, mEpsilon))
// {
// if (!Contains(*permuted[i], minimal, distDiff))
// {
// UpdateFunction update = mUpdate[support.Quantity];
// Circle2<Real> circle = (this->*update)(i, permuted,
// support);
// if (circle.Radius > minimal.Radius)
// {
// minimal = circle;
// i = 0;
// continue;
// }
// }
// }
// ++i;
// }
// This loop restarts from the beginning of the point list each time
// the circle needs updating. Linus Kllberg (Computer Science at
// Mlardalen University in Sweden) discovered that performance is
// better when the remaining points in the array are processed before
// restarting. The points processed before the point that caused the
// update are likely to be enclosed by the new circle (or near the
// circle boundary) because they were enclosed by the previous circle.
// The chances are better that points after the current one will cause
// growth of the bounding circle.
int n;
for (i = 1 % numPoints, n = 0; i != n; i = (i + 1) % numPoints)
{
if (!support.Contains(i, permuted, mEpsilon))
{
if (!Contains(*permuted[i], minimal, distDiff))
{
UpdateFunction update = mUpdate[support.Quantity];
Circle2<Real> circle =(this->*update)(i, permuted,
support);
if (circle.Radius > minimal.Radius)
{
minimal = circle;
n = i;
}
}
}
}
delete1(permuted);
}
else
{
assertion(false, "Input must contain points\n");
}
minimal.Radius = Math<Real>::Sqrt(minimal.Radius);
}
//----------------------------------------------------------------------------
template <typename Real>
bool MinCircle2<Real>::Contains (const Vector2<Real>& point,
const Circle2<Real>& circle, Real& distDiff)
{
Vector2<Real> diff = point - circle.Center;
Real test = diff.SquaredLength();
// NOTE: In this algorithm, Circle2 is storing the *squared radius*,
// so the next line of code is not in error.
distDiff = test - circle.Radius;
return distDiff <= (Real)0;
}
//----------------------------------------------------------------------------
template <typename Real>
Circle2<Real> MinCircle2<Real>::ExactCircle1 (const Vector2<Real>& P)
{
Circle2<Real> minimal;
minimal.Center = P;
minimal.Radius = (Real)0;
return minimal;
}
//----------------------------------------------------------------------------
template <typename Real>
Circle2<Real> MinCircle2<Real>::ExactCircle2 (const Vector2<Real>& P0,
const Vector2<Real>& P1)
{
Vector2<Real> diff = P1 - P0;
Circle2<Real> minimal;
minimal.Center = ((Real)0.5)*(P0 + P1);
minimal.Radius = ((Real)0.25)*diff.SquaredLength();
return minimal;
}
//----------------------------------------------------------------------------
template <typename Real>
Circle2<Real> MinCircle2<Real>::ExactCircle3 (const Vector2<Real>& P0,
const Vector2<Real>& P1, const Vector2<Real>& P2)
{
Vector2<Real> E10 = P1 - P0;
Vector2<Real> E20 = P2 - P0;
Real A[2][2] =
{
{ E10.X(), E10.Y() },
{ E20.X(), E20.Y() }
};
Real B[2] =
{
((Real)0.5)*E10.SquaredLength(),
((Real)0.5)*E20.SquaredLength()
};
Circle2<Real> minimal;
Real det = A[0][0]*A[1][1] - A[0][1]*A[1][0];
if (Math<Real>::FAbs(det) > mEpsilon)
{
Real invDet = ((Real)1)/det;
Vector2<Real> Q;
Q.X() = (A[1][1]*B[0] - A[0][1]*B[1])*invDet;
Q.Y() = (A[0][0]*B[1] - A[1][0]*B[0])*invDet;
minimal.Center = P0 + Q;
minimal.Radius = Q.SquaredLength();
}
else
{
minimal.Center = Vector2<Real>::ZERO;
minimal.Radius = Math<Real>::MAX_REAL;
}
return minimal;
}
//----------------------------------------------------------------------------
template <typename Real>
Circle2<Real> MinCircle2<Real>::UpdateSupport1 (int i,
Vector2<Real>** permuted, Support& support)
{
const Vector2<Real>& P0 = *permuted[support.Index[0]];
const Vector2<Real>& P1 = *permuted[i];
Circle2<Real> minimal = ExactCircle2(P0, P1);
support.Quantity = 2;
support.Index[1] = i;
return minimal;
}
//----------------------------------------------------------------------------
template <typename Real>
Circle2<Real> MinCircle2<Real>::UpdateSupport2 (int i,
Vector2<Real>** permuted, Support& support)
{
const Vector2<Real>* point[2] =
{
permuted[support.Index[0]], // P0
permuted[support.Index[1]] // P1
};
const Vector2<Real>& P2 = *permuted[i];
// Permutations of type 2, used for calling ExactCircle2(...).
const int numType2 = 2;
const int type2[numType2][2] =
{
{0, /*2*/ 1},
{1, /*2*/ 0}
};
// Permutations of type 3, used for calling ExactCircle3(...).
const int numType3 = 1; // {0, 1, 2}
Circle2<Real> circle[numType2 + numType3];
int indexCircle = 0;
Real minRSqr = Math<Real>::MAX_REAL;
int indexMinRSqr = -1;
Real distDiff, minDistDiff = Math<Real>::MAX_REAL;
int indexMinDistDiff = -1;
// Permutations of type 2.
int j;
for (j = 0; j < numType2; ++j, ++indexCircle)
{
circle[indexCircle] = ExactCircle2(*point[type2[j][0]], P2);
if (circle[indexCircle].Radius < minRSqr)
{
if (Contains(*point[type2[j][1]], circle[indexCircle], distDiff))
{
minRSqr = circle[indexCircle].Radius;
indexMinRSqr = indexCircle;
}
else if (distDiff < minDistDiff)
{
minDistDiff = distDiff;
indexMinDistDiff = indexCircle;
}
}
}
// Permutations of type 3.
circle[indexCircle] = ExactCircle3(*point[0], *point[1], P2);
if (circle[indexCircle].Radius < minRSqr)
{
minRSqr = circle[indexCircle].Radius;
indexMinRSqr = indexCircle;
}
// Theoreticaly, indexMinRSqr >= 0, but floating-point round-off errors
// can lead to indexMinRSqr == -1. When this happens, the minimal sphere
// is chosen to be the one that has the minimum absolute errors between
// the sphere and points (barely) outside the sphere.
if (indexMinRSqr == -1)
{
indexMinRSqr = indexMinDistDiff;
}
Circle2<Real> minimal = circle[indexMinRSqr];
switch (indexMinRSqr)
{
case 0:
support.Index[1] = i;
break;
case 1:
support.Index[0] = i;
break;
case 2:
support.Quantity = 3;
support.Index[2] = i;
break;
}
return minimal;
}
//----------------------------------------------------------------------------
template <typename Real>
Circle2<Real> MinCircle2<Real>::UpdateSupport3 (int i,
Vector2<Real>** permuted, Support& support)
{
const Vector2<Real>* point[3] =
{
permuted[support.Index[0]], // P0
permuted[support.Index[1]], // P1
permuted[support.Index[2]] // P2
};
const Vector2<Real>& P3 = *permuted[i];
// Permutations of type 2, used for calling ExactCircle2(...).
const int numType2 = 3;
const int type2[numType2][3] =
{
{0, /*3*/ 1, 2},
{1, /*3*/ 0, 2},
{2, /*3*/ 0, 1}
};
// Permutations of type 2, used for calling ExactCircle3(...).
const int numType3 = 3;
const int type3[numType3][3] =
{
{0, 1, /*3*/ 2},
{0, 2, /*3*/ 1},
{1, 2, /*3*/ 0}
};
Circle2<Real> circle[numType2 + numType3];
int indexCircle = 0;
Real minRSqr = Math<Real>::MAX_REAL;
int indexMinRSqr = -1;
Real distDiff, minDistDiff = Math<Real>::MAX_REAL;
int indexMinDistDiff = -1;
// Permutations of type 2.
int j;
for (j = 0; j < numType2; ++j, ++indexCircle)
{
circle[indexCircle] = ExactCircle2(*point[type2[j][0]], P3);
if (circle[indexCircle].Radius < minRSqr)
{
if (Contains(*point[type2[j][1]], circle[indexCircle], distDiff)
&& Contains(*point[type2[j][2]], circle[indexCircle], distDiff))
{
minRSqr = circle[indexCircle].Radius;
indexMinRSqr = indexCircle;
}
else if (distDiff < minDistDiff)
{
minDistDiff = distDiff;
indexMinDistDiff = indexCircle;
}
}
}
// Permutations of type 3.
for (j = 0; j < numType3; ++j, ++indexCircle)
{
circle[indexCircle] = ExactCircle3(*point[type3[j][0]],
*point[type3[j][1]], P3);
if (circle[indexCircle].Radius < minRSqr)
{
if (Contains(*point[type3[j][2]], circle[indexCircle], distDiff))
{
minRSqr = circle[indexCircle].Radius;
indexMinRSqr = indexCircle;
}
else if (distDiff < minDistDiff)
{
minDistDiff = distDiff;
indexMinDistDiff = indexCircle;
}
}
}
// Theoreticaly, indexMinRSqr >= 0, but floating-point round-off errors
// can lead to indexMinRSqr == -1. When this happens, the minimal circle
// is chosen to be the one that has the minimum absolute errors between
// the circle and points (barely) outside the circle.
if (indexMinRSqr == -1)
{
indexMinRSqr = indexMinDistDiff;
}
Circle2<Real> minimal = circle[indexMinRSqr];
switch (indexMinRSqr)
{
case 0:
support.Quantity = 2;
support.Index[1] = i;
break;
case 1:
support.Quantity = 2;
support.Index[0] = i;
break;
case 2:
support.Quantity = 2;
support.Index[0] = support.Index[2];
support.Index[1] = i;
break;
case 3:
support.Index[2] = i;
break;
case 4:
support.Index[1] = i;
break;
case 5:
support.Index[0] = i;
break;
}
return minimal;
}
//----------------------------------------------------------------------------
template <typename Real>
bool MinCircle2<Real>::Support::Contains (int index, Vector2<Real>** points,
Real epsilon)
{
for (int i = 0; i < Quantity; ++i)
{
Vector2<Real> diff = *points[index] - *points[Index[i]];
if (diff.SquaredLength() < epsilon)
{
return true;
}
}
return false;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class MinCircle2<float>;
template WM5_MATHEMATICS_ITEM
class MinCircle2<double>;
//----------------------------------------------------------------------------
}
|