File: Wm5ContSeparatePoints3.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 90,124 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 40
file content (246 lines) | stat: -rw-r--r-- 8,392 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)

#include "Wm5MathematicsPCH.h"
#include "Wm5ContSeparatePoints3.h"
#include "Wm5ConvexHull3.h"

namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
SeparatePoints3<Real>::SeparatePoints3 (int numPoints0,
    const Vector3<Real>* points0, int numPoints1,
    const Vector3<Real>* points1, Plane3<Real>& separatingPlane)
{
    // Construct convex hull of point set 0.
    ConvexHull3<Real> hull0(numPoints0, (Vector3<Real>*)points0, 0.001f,
        false, Query::QT_INT64);

    // Code does not currently handle point/segment/polygon hull.
    assertion(hull0.GetDimension() == 3,
        "Code currently supports only noncoplanar points\n");
    if (hull0.GetDimension() < 3)
    {
        return;
    }

    int numTriangles0 = hull0.GetNumSimplices();
    const int* indices0 = hull0.GetIndices();

    // Construct convex hull of point set 1.
    ConvexHull3<Real> hull1(numPoints1, (Vector3<Real>*)points1, 0.001f,
        false, Query::QT_INT64);

    // Code does not currently handle point/segment/polygon hull.
    assertion(hull1.GetDimension() == 3,
        "Code currently supports only noncoplanar points\n");
    if (hull1.GetDimension() < 3)
    {
        return;
    }

    int numTriangles1 = hull1.GetNumSimplices();
    const int* indices1 = hull1.GetIndices();

    // Test faces of hull 0 for possible separation of points.
    int i, i0, i1, i2, side0, side1;
    Vector3<Real> diff0, diff1;
    for (i = 0; i < numTriangles0; ++i)
    {
        // Look up face (assert: i0 != i1 && i0 != i2 && i1 != i2).
        i0 = indices0[3*i  ];
        i1 = indices0[3*i+1];
        i2 = indices0[3*i+2];

        // Compute potential separating plane (assert: normal != (0,0,0)).
        separatingPlane = Plane3<Real>(points0[i0], points0[i1], points0[i2]);

        // Determine if hull 1 is on same side of plane.
        side1 = OnSameSide(separatingPlane, numTriangles1, indices1, points1);

        if (side1)
        {
            // Determine which side of plane hull 0 lies.
            side0 = WhichSide(separatingPlane, numTriangles0, indices0,
                points0);
            if (side0*side1 <= 0)  // Plane separates hulls.
            {
                mSeparated = true;
                return;
            }
        }
    }

    // Test faces of hull 1 for possible separation of points.
    for (i = 0; i < numTriangles1; ++i)
    {
        // Look up edge (assert: i0 != i1 && i0 != i2 && i1 != i2).
        i0 = indices1[3*i  ];
        i1 = indices1[3*i+1];
        i2 = indices1[3*i+2];

        // Compute perpendicular to face (assert: normal != (0,0,0)).
        separatingPlane = Plane3<Real>(points1[i0], points1[i1], points1[i2]);

        // Determine if hull 0 is on same side of plane.
        side0 = OnSameSide(separatingPlane, numTriangles0, indices0, points0);
        if (side0)
        {
            // Determine which side of plane hull 1 lies.
            side1 = WhichSide(separatingPlane, numTriangles1, indices1,
                points1);
            if (side0*side1 <= 0)  // Plane separates hulls.
            {
                mSeparated = true;
                return;
            }
        }
    }

    // Build edge set for hull 0.
    std::set<std::pair<int,int> > edgeSet0;
    for (i = 0; i < numTriangles0; ++i)
    {
        // Look up face (assert: i0 != i1 && i0 != i2 && i1 != i2).
        i0 = indices0[3*i  ];
        i1 = indices0[3*i+1];
        i2 = indices0[3*i+2];
        edgeSet0.insert(std::make_pair(i0, i1));
        edgeSet0.insert(std::make_pair(i0, i2));
        edgeSet0.insert(std::make_pair(i1, i2));
    }

    // Build edge list for hull 1.
    std::set<std::pair<int,int> > edgeSet1;
    for (i = 0; i < numTriangles1; ++i)
    {
        // Look up face (assert: i0 != i1 && i0 != i2 && i1 != i2).
        i0 = indices1[3*i  ];
        i1 = indices1[3*i+1];
        i2 = indices1[3*i+2];
        edgeSet1.insert(std::make_pair(i0, i1));
        edgeSet1.insert(std::make_pair(i0, i2));
        edgeSet1.insert(std::make_pair(i1, i2));
    }

    // Test planes whose normals are cross products of two edges, one from
    // each hull.
    std::set<std::pair<int,int> >::iterator e0iter = edgeSet0.begin();
    std::set<std::pair<int,int> >::iterator e0end = edgeSet0.end();
    for (/**/; e0iter != e0end; ++e0iter)
    {
        // Get edge.
        diff0 = points0[e0iter->second] - points0[e0iter->first];

        std::set<std::pair<int,int> >::iterator e1iter = edgeSet0.begin();
        std::set<std::pair<int,int> >::iterator e1end = edgeSet0.end();
        for (/**/; e1iter != e1end; ++e1iter)
        {
            diff1 = points1[e1iter->second] - points1[e1iter->first];

            // Compute potential separating plane.
            separatingPlane.Normal = diff0.UnitCross(diff1);
            separatingPlane.Constant = separatingPlane.Normal.Dot(
                points0[e0iter->first]);

            // Determine if hull 0 is on same side of plane.
            side0 = OnSameSide(separatingPlane, numTriangles0, indices0,
                points0);
            side1 = OnSameSide(separatingPlane, numTriangles1, indices1,
                points1);

            if (side0*side1 < 0)  // Plane separates hulls.
            {
                mSeparated = true;
                return;
            }
        }
    }

    mSeparated = false;
}
//----------------------------------------------------------------------------
template <typename Real>
SeparatePoints3<Real>::operator bool ()
{
    return mSeparated;
}
//----------------------------------------------------------------------------
template <typename Real>
int SeparatePoints3<Real>::OnSameSide (const Plane3<Real>& plane,
    int numTriangles, const int* indices, const Vector3<Real>* points)
{
    // test if all points on same side of plane (nx,ny,nz)*(x,y,z) = c
    int posSide = 0, negSide = 0;

    for (int t = 0; t < numTriangles; ++t)
    {
        for (int i = 0; i < 3; ++i)
        {
            int v = indices[3*t + i];
            Real c0 = plane.Normal.Dot(points[v]);
            if (c0 > plane.Constant + Math<Real>::ZERO_TOLERANCE)
            {
                ++posSide;
            }
            else if (c0 < plane.Constant - Math<Real>::ZERO_TOLERANCE)
            {
                ++negSide;
            }
            
            if (posSide && negSide)
            {
                // Plane splits point set.
                return 0;
            }
        }
    }

    return (posSide ? +1 : -1);
}
//----------------------------------------------------------------------------
template <typename Real>
int SeparatePoints3<Real>::WhichSide (const Plane3<Real>& plane,
    int numTriangles, const int* indices, const Vector3<Real>* points)
{
    // Establish which side of plane hull is on.
    for (int t = 0; t < numTriangles; ++t)
    {
        for (int i = 0; i < 3; ++i)
        {
            int v = indices[3*t + i];
            Real c0 = plane.Normal.Dot(points[v]);
            if (c0 > plane.Constant + Math<Real>::ZERO_TOLERANCE)
            {
                // Positive side.
                return +1;
            }
            if (c0 < plane.Constant - Math<Real>::ZERO_TOLERANCE)
            {
                // Negative side.
                return -1;
            }
        }
    }

    // Hull is effectively collinear.
    return 0;
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class SeparatePoints3<float>;

template WM5_MATHEMATICS_ITEM
class SeparatePoints3<double>;
//----------------------------------------------------------------------------
}