1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5DistCircle3Circle3.h"
#include "Wm5PolynomialRoots.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
DistCircle3Circle3<Real>::DistCircle3Circle3 (const Circle3<Real>& circle0,
const Circle3<Real>& circle1)
:
mCircle0(&circle0),
mCircle1(&circle1)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Circle3<Real>& DistCircle3Circle3<Real>::GetCircle0 () const
{
return *mCircle0;
}
//----------------------------------------------------------------------------
template <typename Real>
const Circle3<Real>& DistCircle3Circle3<Real>::GetCircle1 () const
{
return *mCircle1;
}
//----------------------------------------------------------------------------
template <typename Real>
Real DistCircle3Circle3<Real>::Get ()
{
return Math<Real>::Sqrt(GetSquared());
}
//----------------------------------------------------------------------------
template <typename Real>
Real DistCircle3Circle3<Real>::GetSquared ()
{
Vector3<Real> diff = mCircle1->Center - mCircle0->Center;
Real u0u1 = mCircle0->Direction0.Dot(mCircle1->Direction0);
Real u0v1 = mCircle0->Direction0.Dot(mCircle1->Direction1);
Real v0u1 = mCircle0->Direction1.Dot(mCircle1->Direction0);
Real v0v1 = mCircle0->Direction1.Dot(mCircle1->Direction1);
Real a0 = -diff.Dot(mCircle0->Direction0);
Real a1 = -mCircle1->Radius*u0u1;
Real a2 = -mCircle1->Radius*u0v1;
Real a3 = diff.Dot(mCircle0->Direction1);
Real a4 = mCircle1->Radius*v0u1;
Real a5 = mCircle1->Radius*v0v1;
Real b0 = -diff.Dot(mCircle1->Direction0);
Real b1 = mCircle0->Radius*u0u1;
Real b2 = mCircle0->Radius*v0u1;
Real b3 = diff.Dot(mCircle1->Direction1);
Real b4 = -mCircle0->Radius*u0v1;
Real b5 = -mCircle0->Radius*v0v1;
// Compute polynomial p0 = p00+p01*z+p02*z^2.
Polynomial1<Real> p0(2);
p0[0] = a2*b1 - a5*b2;
p0[1] = a0*b4 - a3*b5;
p0[2] = a5*b2 - a2*b1 + a1*b4 - a4*b5;
// Compute polynomial p1 = p10+p11*z.
Polynomial1<Real> p1(1);
p1[0] = a0*b1 - a3*b2;
p1[1] = a1*b1 - a5*b5 + a2*b4 - a4*b2;
// Compute polynomial q0 = q00+q01*z+q02*z^2.
Polynomial1<Real> q0(2);
q0[0] = a0*a0 + a2*a2 + a3*a3 + a5*a5;
q0[1] = ((Real)2)*(a0*a1 + a3*a4);
q0[2] = a1*a1 - a2*a2 + a4*a4 - a5*a5;
// Compute polynomial q1 = q10+q11*z.
Polynomial1<Real> q1(1);
q1[0] = ((Real)2)*(a0*a2 + a3*a5);
q1[1] = ((Real)2)*(a1*a2 + a4*a5);
// Compute coefficients of r0 = r00+r02*z^2.
Polynomial1<Real> r0(2);
r0[0] = b0*b0;
r0[1] = (Real)0;
r0[2] = b3*b3 - b0*b0;
// Compute polynomial r1 = r11*z.
Polynomial1<Real> r1(1);
r1[0] = (Real)0;
r1[1] = ((Real)2)*b0*b3;
// Compute polynomial g0 = g00+g01*z+g02*z^2+g03*z^3+g04*z^4.
Polynomial1<Real> g0(4);
g0[0] = p0[0]*p0[0] + p1[0]*p1[0] - q0[0]*r0[0];
g0[1] = ((Real)2)*(p0[0]*p0[1] + p1[0]*p1[1]) - q0[1]*r0[0] - q1[0]*r1[1];
g0[2] = p0[1]*p0[1] + ((Real)2)*p0[0]*p0[2] - p1[0]*p1[0] +
p1[1]*p1[1] - q0[2]*r0[0] - q0[0]*r0[2] - q1[1]*r1[1];
g0[3] = ((Real)2)*(p0[1]*p0[2] - p1[0]*p1[1]) - q0[1]*r0[2] + q1[0]*r1[1];
g0[4] = p0[2]*p0[2] - p1[1]*p1[1] - q0[2]*r0[2] + q1[1]*r1[1];
// Compute polynomial g1 = g10+g11*z+g12*z^2+g13*z^3.
Polynomial1<Real> g1(3);
g1[0] = ((Real)2)*p0[0]*p1[0] - q1[0]*r0[0];
g1[1] = ((Real)2)*(p0[1]*p1[0] + p0[0]*p1[1]) - q1[1]*r0[0] - q0[0]*r1[1];
g1[2] = ((Real)2)*(p0[2]*p1[0] + p0[1]*p1[1]) - q1[0]*r0[2] - q0[1]*r1[1];
g1[3] = ((Real)2)*p0[2]*p1[1] - q1[1]*r0[2] - q0[2]*r1[1];
// Compute polynomial h = sum_{i=0}^8 h_i z^i.
Polynomial1<Real> h(8);
h[0] = g0[0]*g0[0] - g1[0]*g1[0];
h[1] = ((Real)2)*(g0[0]*g0[1] - g1[0]*g1[1]);
h[2] = g0[1]*g0[1] + g1[0]*g1[0] - g1[1]*g1[1] +
((Real)2)*(g0[0]*g0[2] - g1[0]*g1[2]);
h[3] = ((Real)2)*(g0[1]*g0[2] + g0[0]*g0[3] + g1[0]*g1[1] -
g1[1]*g1[2] - g1[0]*g1[3]);
h[4] = g0[2]*g0[2] + g1[1]*g1[1] - g1[2]*g1[2] +
((Real)2)*(g0[1]*g0[3] + g0[0]*g0[4] + g1[0]*g1[2] -
g1[1]*g1[3]);
h[5] = ((Real)2)*(g0[2]*g0[3] + g0[1]*g0[4] + g1[1]*g1[2] +
g1[0]*g1[3] - g1[2]*g1[3]);
h[6] = g0[3]*g0[3] + g1[2]*g1[2] - g1[3]*g1[3] +
((Real)2)*(g0[2]*g0[4] + g1[1]*g1[3]);
h[7] = ((Real)2)*(g0[3]*g0[4] + g1[2]*g1[3]);
h[8] = g0[4]*g0[4] + g1[3]*g1[3];
PolynomialRoots<Real> polyroots(Math<Real>::ZERO_TOLERANCE);
polyroots.FindB(h, (Real)-1.01, (Real)1.01, 6);
int count = polyroots.GetCount();
const Real* roots = polyroots.GetRoots();
Real minSqrDist = Math<Real>::MAX_REAL;
Real cs0, sn0, cs1, sn1;
for (int i = 0; i < count; ++i)
{
cs1 = roots[i];
if (cs1 < (Real)-1)
{
cs1 = (Real)-1;
}
else if (cs1 > (Real)1)
{
cs1 = (Real)1;
}
// You can also try sn1 = -g0(cs1)/g1(cs1) to avoid the sqrt call,
// but beware when g1 is nearly zero. For now I use g0 and g1 to
// determine the sign of sn1.
sn1 = Math<Real>::Sqrt(Math<Real>::FAbs((Real)1 - cs1*cs1));
Real g0cs1 = g0(cs1);
Real g1cs1 = g1(cs1);
Real product = g0cs1*g1cs1;
if (product > (Real)0)
{
sn1 = -sn1;
}
else if (product < (Real)0)
{
// sn1 already has correct sign
}
else if (g1cs1 != (Real)0)
{
// g0 == 0.0
// assert( sn1 == 0.0 );
}
else // g1 == 0.0
{
// TO DO: When g1 = 0, there is no constraint on sn1.
// What should be done here? In this case, cs1 is a root
// to the quartic equation g0(cs1) = 0. Is there some
// geometric significance?
assertion(false, "Unexpected case\n");
}
Real m00 = a0 + a1*cs1 + a2*sn1;
Real m01 = a3 + a4*cs1 + a5*sn1;
Real m10 = b2*sn1 + b5*cs1;
Real m11 = b1*sn1 + b4*cs1;
Real det = m00*m11 - m01*m10;
if (Math<Real>::FAbs(det) >= Math<Real>::ZERO_TOLERANCE)
{
Real invDet = ((Real)1)/det;
Real lambda = -(b0*sn1 + b3*cs1);
cs0 = lambda*m00*invDet;
sn0 = -lambda*m01*invDet;
// Unitize in case of numerical error. Remove if you feel
// confident of the accuracy for cs0 and sn0.
Real tmp = Math<Real>::InvSqrt(cs0*cs0 + sn0*sn0);
cs0 *= tmp;
sn0 *= tmp;
Vector3<Real> closest0 = mCircle0->Center +
mCircle0->Radius*(cs0*mCircle0->Direction0 +
sn0*mCircle0->Direction1);
Vector3<Real> closest1 = mCircle1->Center +
mCircle1->Radius*(cs1*mCircle1->Direction0 +
sn1*mCircle1->Direction1);
diff = closest1 - closest0;
Real sqrDist = diff.SquaredLength();
if (sqrDist < minSqrDist)
{
minSqrDist = sqrDist;
mClosestPoint0 = closest0;
mClosestPoint1 = closest1;
}
}
else
{
// TO DO: Handle this case. Is there some geometric
// significance?
assertion(false, "Unexpected case\n");
}
}
return minSqrDist;
}
//----------------------------------------------------------------------------
template <typename Real>
Real DistCircle3Circle3<Real>::Get (Real t,
const Vector3<Real>& velocity0, const Vector3<Real>& velocity1)
{
Vector3<Real> movedCenter0 = mCircle0->Center + t*velocity0;
Vector3<Real> movedCenter1 = mCircle1->Center + t*velocity1;
Circle3<Real> movedCircle0(movedCenter0, mCircle0->Direction0,
mCircle0->Direction1, mCircle0->Normal, mCircle0->Radius);
Circle3<Real> movedCircle1(movedCenter1, mCircle1->Direction0,
mCircle1->Direction1, mCircle1->Normal, mCircle1->Radius);
return DistCircle3Circle3<Real>(movedCircle0, movedCircle1).Get();
}
//----------------------------------------------------------------------------
template <typename Real>
Real DistCircle3Circle3<Real>::GetSquared (Real t,
const Vector3<Real>& velocity0, const Vector3<Real>& velocity1)
{
Vector3<Real> movedCenter0 = mCircle0->Center + t*velocity0;
Vector3<Real> movedCenter1 = mCircle1->Center + t*velocity1;
Circle3<Real> movedCircle0(movedCenter0, mCircle0->Direction0,
mCircle0->Direction1, mCircle0->Normal, mCircle0->Radius);
Circle3<Real> movedCircle1(movedCenter1, mCircle1->Direction0,
mCircle1->Direction1, mCircle1->Normal, mCircle1->Radius);
return DistCircle3Circle3<Real>(movedCircle0, movedCircle1).GetSquared();
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class DistCircle3Circle3<float>;
template WM5_MATHEMATICS_ITEM
class DistCircle3Circle3<double>;
//----------------------------------------------------------------------------
}
|