File: Wm5DistCircle3Circle3.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 90,124 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 40
file content (266 lines) | stat: -rw-r--r-- 9,882 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)

#include "Wm5MathematicsPCH.h"
#include "Wm5DistCircle3Circle3.h"
#include "Wm5PolynomialRoots.h"

namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
DistCircle3Circle3<Real>::DistCircle3Circle3 (const Circle3<Real>& circle0,
    const Circle3<Real>& circle1)
    :
    mCircle0(&circle0),
    mCircle1(&circle1)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Circle3<Real>& DistCircle3Circle3<Real>::GetCircle0 () const
{
    return *mCircle0;
}
//----------------------------------------------------------------------------
template <typename Real>
const Circle3<Real>& DistCircle3Circle3<Real>::GetCircle1 () const
{
    return *mCircle1;
}
//----------------------------------------------------------------------------
template <typename Real>
Real DistCircle3Circle3<Real>::Get ()
{
    return Math<Real>::Sqrt(GetSquared());
}
//----------------------------------------------------------------------------
template <typename Real>
Real DistCircle3Circle3<Real>::GetSquared ()
{
    Vector3<Real> diff = mCircle1->Center - mCircle0->Center;
    Real u0u1 = mCircle0->Direction0.Dot(mCircle1->Direction0);
    Real u0v1 = mCircle0->Direction0.Dot(mCircle1->Direction1);
    Real v0u1 = mCircle0->Direction1.Dot(mCircle1->Direction0);
    Real v0v1 = mCircle0->Direction1.Dot(mCircle1->Direction1);

    Real a0 = -diff.Dot(mCircle0->Direction0);
    Real a1 = -mCircle1->Radius*u0u1;
    Real a2 = -mCircle1->Radius*u0v1;
    Real a3 = diff.Dot(mCircle0->Direction1);
    Real a4 = mCircle1->Radius*v0u1;
    Real a5 = mCircle1->Radius*v0v1;

    Real b0 = -diff.Dot(mCircle1->Direction0);
    Real b1 = mCircle0->Radius*u0u1;
    Real b2 = mCircle0->Radius*v0u1;
    Real b3 = diff.Dot(mCircle1->Direction1);
    Real b4 = -mCircle0->Radius*u0v1;
    Real b5 = -mCircle0->Radius*v0v1;

    // Compute polynomial p0 = p00+p01*z+p02*z^2.
    Polynomial1<Real> p0(2);
    p0[0] = a2*b1 - a5*b2;
    p0[1] = a0*b4 - a3*b5;
    p0[2] = a5*b2 - a2*b1 + a1*b4 - a4*b5;

    // Compute polynomial p1 = p10+p11*z.
    Polynomial1<Real> p1(1);
    p1[0] = a0*b1 - a3*b2;
    p1[1] = a1*b1 - a5*b5 + a2*b4 - a4*b2;

    // Compute polynomial q0 = q00+q01*z+q02*z^2.
    Polynomial1<Real> q0(2);
    q0[0] = a0*a0 + a2*a2 + a3*a3 + a5*a5;
    q0[1] = ((Real)2)*(a0*a1 + a3*a4);
    q0[2] = a1*a1 - a2*a2 + a4*a4 - a5*a5;

    // Compute polynomial q1 = q10+q11*z.
    Polynomial1<Real> q1(1);
    q1[0] = ((Real)2)*(a0*a2 + a3*a5);
    q1[1] = ((Real)2)*(a1*a2 + a4*a5);

    // Compute coefficients of r0 = r00+r02*z^2.
    Polynomial1<Real> r0(2);
    r0[0] = b0*b0;
    r0[1] = (Real)0;
    r0[2] = b3*b3 - b0*b0;

    // Compute polynomial r1 = r11*z.
    Polynomial1<Real> r1(1);
    r1[0] = (Real)0;
    r1[1] = ((Real)2)*b0*b3;

    // Compute polynomial g0 = g00+g01*z+g02*z^2+g03*z^3+g04*z^4.
    Polynomial1<Real> g0(4);
    g0[0] = p0[0]*p0[0] + p1[0]*p1[0] - q0[0]*r0[0];
    g0[1] = ((Real)2)*(p0[0]*p0[1] + p1[0]*p1[1]) - q0[1]*r0[0] - q1[0]*r1[1];
    g0[2] = p0[1]*p0[1] + ((Real)2)*p0[0]*p0[2] - p1[0]*p1[0] +
        p1[1]*p1[1] - q0[2]*r0[0] - q0[0]*r0[2] - q1[1]*r1[1];
    g0[3] = ((Real)2)*(p0[1]*p0[2] - p1[0]*p1[1]) - q0[1]*r0[2] + q1[0]*r1[1];
    g0[4] = p0[2]*p0[2] - p1[1]*p1[1] - q0[2]*r0[2] + q1[1]*r1[1];

    // Compute polynomial g1 = g10+g11*z+g12*z^2+g13*z^3.
    Polynomial1<Real> g1(3);
    g1[0] = ((Real)2)*p0[0]*p1[0] - q1[0]*r0[0];
    g1[1] = ((Real)2)*(p0[1]*p1[0] + p0[0]*p1[1]) - q1[1]*r0[0] - q0[0]*r1[1];
    g1[2] = ((Real)2)*(p0[2]*p1[0] + p0[1]*p1[1]) - q1[0]*r0[2] - q0[1]*r1[1];
    g1[3] = ((Real)2)*p0[2]*p1[1] - q1[1]*r0[2] - q0[2]*r1[1];

    // Compute polynomial h = sum_{i=0}^8 h_i z^i.
    Polynomial1<Real> h(8);
    h[0] = g0[0]*g0[0] - g1[0]*g1[0];
    h[1] = ((Real)2)*(g0[0]*g0[1] - g1[0]*g1[1]);
    h[2] = g0[1]*g0[1] + g1[0]*g1[0] - g1[1]*g1[1] +
        ((Real)2)*(g0[0]*g0[2] - g1[0]*g1[2]);
    h[3] = ((Real)2)*(g0[1]*g0[2] + g0[0]*g0[3] + g1[0]*g1[1] -
        g1[1]*g1[2] - g1[0]*g1[3]);
    h[4] = g0[2]*g0[2] + g1[1]*g1[1] - g1[2]*g1[2] +
        ((Real)2)*(g0[1]*g0[3] + g0[0]*g0[4] + g1[0]*g1[2] -
        g1[1]*g1[3]);
    h[5] = ((Real)2)*(g0[2]*g0[3] + g0[1]*g0[4] + g1[1]*g1[2] +
        g1[0]*g1[3] - g1[2]*g1[3]);
    h[6] = g0[3]*g0[3] + g1[2]*g1[2] - g1[3]*g1[3] +
        ((Real)2)*(g0[2]*g0[4] + g1[1]*g1[3]);
    h[7] = ((Real)2)*(g0[3]*g0[4] + g1[2]*g1[3]);
    h[8] = g0[4]*g0[4] + g1[3]*g1[3];

    PolynomialRoots<Real> polyroots(Math<Real>::ZERO_TOLERANCE);
    polyroots.FindB(h, (Real)-1.01, (Real)1.01, 6);
    int count = polyroots.GetCount();
    const Real* roots = polyroots.GetRoots();

    Real minSqrDist = Math<Real>::MAX_REAL;
    Real cs0, sn0, cs1, sn1;

    for (int i = 0; i < count; ++i)
    {
        cs1 = roots[i];
        if (cs1 < (Real)-1)
        {
            cs1 = (Real)-1;
        }
        else if (cs1 > (Real)1)
        {
            cs1 = (Real)1;
        }

        // You can also try sn1 = -g0(cs1)/g1(cs1) to avoid the sqrt call,
        // but beware when g1 is nearly zero.  For now I use g0 and g1 to
        // determine the sign of sn1.
        sn1 = Math<Real>::Sqrt(Math<Real>::FAbs((Real)1 - cs1*cs1));

        Real g0cs1 = g0(cs1);
        Real g1cs1 = g1(cs1);
        Real product = g0cs1*g1cs1;
        if (product > (Real)0)
        {
            sn1 = -sn1;
        }
        else if (product < (Real)0)
        {
            // sn1 already has correct sign
        }
        else if (g1cs1 != (Real)0)
        {
            // g0 == 0.0
            // assert( sn1 == 0.0 );
        }
        else // g1 == 0.0
        {
            // TO DO:  When g1 = 0, there is no constraint on sn1.
            // What should be done here?  In this case, cs1 is a root
            // to the quartic equation g0(cs1) = 0.  Is there some
            // geometric significance?
            assertion(false, "Unexpected case\n");
        }

        Real m00 = a0 + a1*cs1 + a2*sn1;
        Real m01 = a3 + a4*cs1 + a5*sn1;
        Real m10 = b2*sn1 + b5*cs1;
        Real m11 = b1*sn1 + b4*cs1;
        Real det = m00*m11 - m01*m10;
        if (Math<Real>::FAbs(det) >= Math<Real>::ZERO_TOLERANCE)
        {
            Real invDet = ((Real)1)/det;
            Real lambda = -(b0*sn1 + b3*cs1);
            cs0 = lambda*m00*invDet;
            sn0 = -lambda*m01*invDet;

            // Unitize in case of numerical error.  Remove if you feel
            // confident of the accuracy for cs0 and sn0.
            Real tmp = Math<Real>::InvSqrt(cs0*cs0 + sn0*sn0);
            cs0 *= tmp;
            sn0 *= tmp;

            Vector3<Real> closest0 = mCircle0->Center +
                mCircle0->Radius*(cs0*mCircle0->Direction0 +
                sn0*mCircle0->Direction1);

            Vector3<Real> closest1 = mCircle1->Center +
                mCircle1->Radius*(cs1*mCircle1->Direction0 +
                sn1*mCircle1->Direction1);

            diff = closest1 - closest0;

            Real sqrDist = diff.SquaredLength();
            if (sqrDist < minSqrDist)
            {
                minSqrDist = sqrDist;
                mClosestPoint0 = closest0;
                mClosestPoint1 = closest1;
            }
        }
        else
        {
            // TO DO:  Handle this case.  Is there some geometric
            // significance?
            assertion(false, "Unexpected case\n");
        }
    }

    return minSqrDist;
}
//----------------------------------------------------------------------------
template <typename Real>
Real DistCircle3Circle3<Real>::Get (Real t,
    const Vector3<Real>& velocity0, const Vector3<Real>& velocity1)
{
    Vector3<Real> movedCenter0 = mCircle0->Center + t*velocity0;
    Vector3<Real> movedCenter1 = mCircle1->Center + t*velocity1;
    Circle3<Real> movedCircle0(movedCenter0, mCircle0->Direction0,
        mCircle0->Direction1, mCircle0->Normal, mCircle0->Radius);
    Circle3<Real> movedCircle1(movedCenter1, mCircle1->Direction0,
        mCircle1->Direction1, mCircle1->Normal, mCircle1->Radius);
    return DistCircle3Circle3<Real>(movedCircle0, movedCircle1).Get();
}
//----------------------------------------------------------------------------
template <typename Real>
Real DistCircle3Circle3<Real>::GetSquared (Real t,
    const Vector3<Real>& velocity0, const Vector3<Real>& velocity1)
{
    Vector3<Real> movedCenter0 = mCircle0->Center + t*velocity0;
    Vector3<Real> movedCenter1 = mCircle1->Center + t*velocity1;
    Circle3<Real> movedCircle0(movedCenter0, mCircle0->Direction0,
        mCircle0->Direction1, mCircle0->Normal, mCircle0->Radius);
    Circle3<Real> movedCircle1(movedCenter1, mCircle1->Direction0,
        mCircle1->Direction1, mCircle1->Normal, mCircle1->Radius);
    return DistCircle3Circle3<Real>(movedCircle0, movedCircle1).GetSquared();
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class DistCircle3Circle3<float>;

template WM5_MATHEMATICS_ITEM
class DistCircle3Circle3<double>;
//----------------------------------------------------------------------------
}