1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.3 (2011/07/23)
#include "Wm5MathematicsPCH.h"
#include "Wm5IntrBox3Sphere3.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
IntrBox3Sphere3<Real>::IntrBox3Sphere3 (const Box3<Real>& box,
const Sphere3<Real>& sphere)
:
mBox(&box),
mSphere(&sphere)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Box3<Real>& IntrBox3Sphere3<Real>::GetBox () const
{
return *mBox;
}
//----------------------------------------------------------------------------
template <typename Real>
const Sphere3<Real>& IntrBox3Sphere3<Real>::GetSphere () const
{
return *mSphere;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrBox3Sphere3<Real>::Test ()
{
// Test for intersection in the coordinate system of the box by
// transforming the sphere into that coordinate system.
Vector3<Real> cdiff = mSphere->Center - mBox->Center;
Real ax = Math<Real>::FAbs(cdiff.Dot(mBox->Axis[0]));
Real ay = Math<Real>::FAbs(cdiff.Dot(mBox->Axis[1]));
Real az = Math<Real>::FAbs(cdiff.Dot(mBox->Axis[2]));
Real dx = ax - mBox->Extent[0];
Real dy = ay - mBox->Extent[1];
Real dz = az - mBox->Extent[2];
if (ax <= mBox->Extent[0])
{
if (ay <= mBox->Extent[1])
{
if (az <= mBox->Extent[2])
{
// Sphere center inside box.
return true;
}
else
{
// Potential sphere-face intersection with face z.
return dz <= mSphere->Radius;
}
}
else
{
if (az <= mBox->Extent[2])
{
// Potential sphere-face intersection with face y.
return dy <= mSphere->Radius;
}
else
{
// Potential sphere-edge intersection with edge formed
// by faces y and z.
Real rsqr = mSphere->Radius*mSphere->Radius;
return dy*dy + dz*dz <= rsqr;
}
}
}
else
{
if (ay <= mBox->Extent[1])
{
if (az <= mBox->Extent[2])
{
// Potential sphere-face intersection with face x.
return dx <= mSphere->Radius;
}
else
{
// Potential sphere-edge intersection with edge formed
// by faces x and z.
Real rsqr = mSphere->Radius*mSphere->Radius;
return dx*dx + dz*dz <= rsqr;
}
}
else
{
if (az <= mBox->Extent[2])
{
// Potential sphere-edge intersection with edge formed
// by faces x and y.
Real rsqr = mSphere->Radius*mSphere->Radius;
return dx*dx + dy*dy <= rsqr;
}
else
{
// Potential sphere-vertex intersection at corner formed
// by faces x,y,z.
Real rsqr = mSphere->Radius*mSphere->Radius;
return dx*dx + dy*dy + dz*dz <= rsqr;
}
}
}
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrBox3Sphere3<Real>::Find (Real tmax,
const Vector3<Real>& velocity0, const Vector3<Real>& velocity1)
{
// Find intersections relative to the coordinate system of the box.
// The sphere is transformed to the box coordinates and the velocity of
// the sphere is relative to the box.
Vector3<Real> cdiff = mSphere->Center - mBox->Center;
Vector3<Real> relVelocity = velocity1 - velocity0;
Real ax = cdiff.Dot(mBox->Axis[0]);
Real ay = cdiff.Dot(mBox->Axis[1]);
Real az = cdiff.Dot(mBox->Axis[2]);
Real vx = relVelocity.Dot(mBox->Axis[0]);
Real vy = relVelocity.Dot(mBox->Axis[1]);
Real vz = relVelocity.Dot(mBox->Axis[2]);
// Flip coordinate frame into the first octant.
int signX = 1;
if (ax < (Real)0)
{
ax = -ax;
vx = -vx;
signX = -1;
}
int signY = 1;
if (ay < (Real)0)
{
ay = -ay;
vy = -vy;
signY = -1;
}
int signZ = 1;
if (az < (Real)0)
{
az = -az;
vz = -vz;
signZ = -1;
}
// Intersection coordinates.
Real ix, iy, iz;
int retVal;
if (ax <= mBox->Extent[0])
{
if (ay <= mBox->Extent[1])
{
if (az <= mBox->Extent[2])
{
// The sphere center is inside box. Return it as the contact
// point, but report an "other" intersection type.
mContactTime = (Real)0;
mContactPoint = mSphere->Center;
mIntersectionType = IT_OTHER;
return true;
}
else
{
// Sphere above face on axis Z.
retVal = FindFaceRegionIntersection(mBox->Extent[0],
mBox->Extent[1], mBox->Extent[2], ax, ay, az, vx, vy,
vz, ix, iy, iz, true);
}
}
else
{
if (az <= mBox->Extent[2])
{
// Sphere above face on axis Y.
retVal = FindFaceRegionIntersection(mBox->Extent[0],
mBox->Extent[2] ,mBox->Extent[1], ax, az, ay, vx, vz,
vy, ix, iz, iy, true);
}
else
{
// Sphere is above the edge formed by faces y and z.
retVal = FindEdgeRegionIntersection(mBox->Extent[1],
mBox->Extent[0], mBox->Extent[2], ay, ax, az, vy, vx,
vz, iy, ix, iz, true);
}
}
}
else
{
if (ay <= mBox->Extent[1])
{
if (az <= mBox->Extent[2])
{
// Sphere above face on axis X.
retVal = FindFaceRegionIntersection(mBox->Extent[1],
mBox->Extent[2], mBox->Extent[0], ay, az, ax, vy, vz,
vx, iy, iz, ix, true);
}
else
{
// Sphere is above the edge formed by faces x and z.
retVal = FindEdgeRegionIntersection(mBox->Extent[0],
mBox->Extent[1], mBox->Extent[2], ax, ay, az, vx, vy,
vz, ix, iy, iz, true);
}
}
else
{
if (az <= mBox->Extent[2])
{
// Sphere is above the edge formed by faces x and y.
retVal = FindEdgeRegionIntersection(mBox->Extent[0],
mBox->Extent[2], mBox->Extent[1], ax, az, ay, vx, vz,
vy, ix, iz, iy, true);
}
else
{
// sphere is above the corner formed by faces x,y,z
retVal = FindVertexRegionIntersection(mBox->Extent[0],
mBox->Extent[1], mBox->Extent[2], ax, ay, az, vx, vy,
vz, ix, iy, iz);
}
}
}
if (retVal == 0 || mContactTime > tmax)
{
mIntersectionType = IT_EMPTY;
return false;
}
// Calculate actual intersection (move point back into world coordinates).
mIntersectionType = IT_POINT;
mContactPoint = mBox->Center + (signX*ix)*mBox->Axis[0] +
(signY*iy)*mBox->Axis[1] + (signZ*iz)*mBox->Axis[2];
return true;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector3<Real>& IntrBox3Sphere3<Real>::GetContactPoint () const
{
return mContactPoint;
}
//----------------------------------------------------------------------------
template <typename Real>
Real IntrBox3Sphere3<Real>::GetVertexIntersection (Real dx, Real dy,
Real dz, Real vx, Real vy, Real vz, Real rsqr)
{
// Finds the time of a 3D line-sphere intersection between a line
// P = Dt, where P = (dx, dy, dz) and D = (vx, vy, vz) and
// a sphere of radius^2 rsqr. Note: only valid if there is, in fact,
// an intersection.
Real vsqr = vx*vx + vy*vy + vz*vz;
Real dot = dx*vx + dy*vy + dz*vz;
Real diff = dx*dx + dy*dy + dz*dz - rsqr;
Real inv = Math<Real>::InvSqrt(Math<Real>::FAbs(dot*dot - vsqr*diff));
return diff*inv/((Real)1 - dot*inv);
}
//----------------------------------------------------------------------------
template <typename Real>
Real IntrBox3Sphere3<Real>::GetEdgeIntersection (Real dx, Real dz, Real vx,
Real vz, Real vsqr, Real rsqr)
{
// Finds the time of a 2D line-circle intersection between a line
// P = Dt where P = (dx,dz) and D = (vx, vz) and a circle of radius^2
// rsqr. Note: only valid if there is, in fact, an intersection.
Real dot = vx*dx + vz*dz;
Real diff = dx*dx + dz*dz - rsqr;
Real inv = Math<Real>::InvSqrt(Math<Real>::FAbs(dot*dot - vsqr*diff));
return diff*inv/((Real)1 - dot*inv);
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrBox3Sphere3<Real>::FindFaceRegionIntersection (Real ex, Real ey,
Real ez, Real cx, Real cy, Real cz, Real vx, Real vy, Real vz,
Real& ix, Real& iy, Real& iz, bool aboveFace)
{
// Returns when and whether a sphere in the region above face +Z
// intersects face +Z or any of its vertices or edges. The input
// aboveFace is true when the x and y coordinates are within the x and y
// extents. The function will still work if they are not, but it needs
// to be false then, to avoid some checks that assume that x and y are
// within the extents. This function checks face z, and the vertex and
// two edges that the velocity is headed towards on the face.
// Check for already intersecting if above face.
if (cz <= ez + mSphere->Radius && aboveFace)
{
mContactTime = (Real)0;
return -1;
}
// Check for easy out (moving away on Z axis).
if (vz >= (Real)0)
{
return 0;
}
Real rsqr = mSphere->Radius*mSphere->Radius;
Real vsqrX = vz*vz + vx*vx;
Real vsqrY = vz*vz + vy*vy;
Real dx, dy, dz = cz - ez;
Real crossX, crossY;
int signX, signY;
// This determines which way the box is heading and finds the values of
// CrossX and CrossY which are positive if the sphere center will not
// pass through the box. Then it is only necessary to check two edges,
// the face and the vertex for intersection.
if (vx >= (Real)0)
{
signX = 1;
dx = cx - ex;
crossX = vx*dz - vz*dx;
}
else
{
signX = -1;
dx = cx + ex;
crossX = vz*dx - vx*dz;
}
if (vy >= (Real)0)
{
signY = 1;
dy = cy - ey;
crossY = vy*dz - vz*dy;
}
else
{
signY = -1;
dy = cy + ey;
crossY = vz*dy - vy*dz;
}
// Does the circle intersect along the x edge?
if (crossX > mSphere->Radius*vx*signX)
{
if (crossX*crossX > rsqr*vsqrX)
{
// Sphere overshoots box on the x-axis (either side).
return 0;
}
// Does the circle hit the y edge?
if (crossY > mSphere->Radius*vy*signY)
{
// Potential vertex intersection.
if (crossY*crossY > rsqr*vsqrY)
{
// Sphere overshoots box on the y-axis (either side).
return 0;
}
Vector3<Real> relVelocity(vx,vy,vz);
Vector3<Real> D(dx,dy,dz);
Vector3<Real> cross = D.Cross(relVelocity);
if (cross.SquaredLength() > rsqr*relVelocity.SquaredLength())
{
// Sphere overshoots the box on the corner.
return 0;
}
mContactTime = GetVertexIntersection(dx, dy, dz, vx, vy, vz,
rsqr);
ix = ex*signX;
iy = ey*signY;
}
else
{
// x-edge intersection
mContactTime = GetEdgeIntersection(dx, dz, vx, vz, vsqrX, rsqr);
ix = ex*signX;
iy = cy + vy*mContactTime;
}
}
else
{
// Does the circle hit the y edge?
if (crossY > mSphere->Radius*vy*signY)
{
// Potential y-edge intersection.
if (crossY*crossY > rsqr*vsqrY)
{
// Sphere overshoots box on the y-axis (either side).
return 0;
}
mContactTime = GetEdgeIntersection(dy, dz, vy, vz, vsqrY, rsqr);
ix = cx + vx*mContactTime;
iy = ey*signY;
}
else
{
// Face intersection (easy).
mContactTime = (-dz + mSphere->Radius)/vz;
ix = mContactTime*vx + cx;
iy = mContactTime*vy + cy;
}
}
// z coordinate of any intersection must be the face of z.
iz = ez;
return 1;
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrBox3Sphere3<Real>::FindJustEdgeIntersection (Real cy, Real ex,
Real ey, Real ez, Real dx, Real dz, Real vx, Real vy, Real vz,
Real& ix, Real& iy, Real& iz)
{
// Finds the intersection of a point dx and dz away from an edge with
// direction y. The sphere is at a point cy, and the edge is at the
// point ex. Checks the edge and the vertex the velocity is heading
// towards.
Real rsqr = mSphere->Radius*mSphere->Radius;
Real dy, crossZ, crossX; // possible edge/vertex intersection
int signY;
// Depending on the sign of Vy, pick the vertex that the velocity is
// heading towards on the edge, as well as creating crossX and crossZ
// such that their sign will always be positive if the sphere center goes
// over that edge.
if (vy >= (Real)0)
{
signY = 1;
dy = cy - ey;
crossZ = dx*vy - dy*vx;
crossX = dz*vy - dy*vz;
}
else
{
signY = -1;
dy = cy + ey;
crossZ = dy*vx - dx*vy;
crossX = dy*vz - dz*vy;
}
// Check where on edge this intersection will occur.
if (crossZ >= (Real)0 && crossX >= (Real)0
&& crossX*crossX + crossZ*crossZ >
vy*vy*mSphere->Radius*mSphere->Radius)
{
// Sphere potentially intersects with vertex.
Vector3<Real> relVelocity(vx, vy, vz);
Vector3<Real> D(dx, dy, dz);
Vector3<Real> cross = D.Cross(relVelocity);
if (cross.SquaredLength() > rsqr*relVelocity.SquaredLength())
{
// Sphere overshoots the box on the vertex.
return 0;
}
// Sphere actually does intersect the vertex.
mContactTime = GetVertexIntersection(dx, dy, dz, vx, vy, vz, rsqr);
ix = ex;
iy = signY*ey;
iz = ez;
}
else
{
// Sphere intersects with edge.
Real vsqrX = vz*vz + vx*vx;
mContactTime = GetEdgeIntersection(dx, dz, vx, vz, vsqrX, rsqr);
ix = ex;
iy = cy + mContactTime*vy;
iz = ez;
}
return 1;
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrBox3Sphere3<Real>::FindEdgeRegionIntersection (Real ex, Real ey,
Real ez, Real cx, Real cy, Real cz, Real vx, Real vy, Real vz,
Real& ix, Real& iy, Real& iz, bool aboveEdge)
{
// Assumes the sphere center is in the region above the x and z planes.
// The input aboveEdge is true when the y coordinate is within the y
// extents. The function will still work if it is not, but it needs to be
// false then, to avoid some checks that assume that y is within the
// extent. This function checks the edge that the region is above, as
// well as does a "face region" check on the face it is heading towards.
Real dx = cx - ex;
Real dz = cz - ez;
Real rsqr = mSphere->Radius*mSphere->Radius;
if (aboveEdge)
{
Real diff = dx*dx + dz*dz - rsqr;
if (diff <= (Real)0)
{
// Circle is already intersecting the box.
mContactTime = (Real)0;
return -1;
}
}
Real dot = vx*dx + vz*dz;
if (dot >= (Real)0)
{
// Circle not moving towards box.
return 0;
}
// The value dotPerp splits the region of interest along the edge in the
// middle of that region.
Real dotPerp = vz*dx - vx*dz;
if (dotPerp >= (Real)0)
{
// Sphere moving towards +z face.
if (vx >= (Real)0)
{
// Passed corner, moving away from box.
return 0;
}
// Intersection with x-z edge. If there is trouble with objects that
// "scrape" the surface (velocity perpendicular to face normal, and
// point of contact with a radius direction parallel to the face
// normal), this check may need to be a little more inclusive (small
// tolerance due to floating point errors) as the edge check needs
// to get "scraping" objects (as they hit the edge with the point)
// and the face region check will not catch it because the object is
// not moving towards the face.
if (dotPerp <= -mSphere->Radius*vx)
{
return FindJustEdgeIntersection(cy, ez, ey, ex, dz, dx, vz, vy,
vx, iz, iy, ix);
}
// Now, check the face of z for intersections.
return FindFaceRegionIntersection(ex, ey, ez, cx, cy, cz, vx, vy,
vz, ix, iy, iz, false);
}
else
{
// Sphere moving towards +x face.
if (vz >= (Real)0)
{
// Passed corner, moving away from box.
return 0;
}
// Check intersection with x-z edge. See the note above about
// "scraping" objects.
if (dotPerp >= mSphere->Radius*vz)
{
// Possible edge/vertex intersection.
return FindJustEdgeIntersection(cy, ex, ey, ez, dx, dz, vx, vy,
vz, ix, iy, iz);
}
// Now, check the face of x for intersections.
return FindFaceRegionIntersection(ez, ey, ex, cz, cy, cx, vz, vy,
vx, iz, iy, ix, false);
}
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrBox3Sphere3<Real>::FindVertexRegionIntersection (Real ex, Real ey,
Real ez, Real cx, Real cy, Real cz, Real vx, Real vy, Real vz,
Real& ix, Real& iy, Real& iz)
{
// Assumes the sphere is above the vertex +ex, +ey, +ez.
Real dx = cx - ex;
Real dy = cy - ey;
Real dz = cz - ez;
Real rsqr = mSphere->Radius*mSphere->Radius;
Real diff = dx*dx + dy*dy + dz*dz - rsqr;
if (diff <= (Real)0)
{
// Sphere is already intersecting the box.
mContactTime = (Real)0;
return -1;
}
if (vx*dx + vy*dy + vz*dz >= (Real)0)
{
// Sphere not moving towards box.
return 0;
}
// The box can be divided up into 3 regions, which simplifies checking to
// see what the sphere hits. The regions are divided by which edge
// (formed by the vertex and some axis) is closest to the velocity
// vector.
//
// To check if it hits the vertex, look at the edge (E) it is going
// towards. Create a plane formed by the other two edges (with E as the
// plane normal) with the vertex at the origin. The intercept along an
// axis, in that plane, of the line formed by the sphere center and the
// velocity as its direction, will be fCrossAxis/fVEdge. Thus, the
// distance from the origin to the point in the plane that that line from
// the sphere in the velocity direction crosses will be the squared sum
// of those two intercepts. If that sum is less than the radius squared,
// then the sphere will hit the vertex otherwise, it will continue on
// past the vertex. If it misses, since it is known which edge the box
// is near, the find edge region test can be used.
//
// Also, due to the constrained conditions, only those six cases (two for
// each region, since fCrossEdge can be + or -) of signs of fCross values
// can occur.
//
// The 3rd case will also pick up cases where D = V, causing a ZERO cross.
Real crossX = vy*dz - vz*dy;
Real crossY = vx*dz - vz*dx;
Real crossZ = vy*dx - vx*dy;
Real crX2 = crossX*crossX;
Real crY2 = crossY*crossY;
Real crZ2 = crossZ*crossZ;
Real vx2 = vx*vx;
Real vy2 = vy*vy;
Real vz2 = vz*vz;
// Intersection with the vertex?
if ((crossY < (Real)0 && crossZ >= (Real)0 && crY2 + crZ2 <= rsqr*vx2)
|| (crossZ < (Real)0 && crossX < (Real)0 && crX2 + crZ2 <= rsqr*vy2)
|| (crossY >= (Real)0 && crossX >= (Real)0 && crX2 + crY2 <= rsqr*vz2))
{
// Standard line-sphere intersection.
mContactTime = GetVertexIntersection(dx, dy, dz, vx, vy, vz,
mSphere->Radius*mSphere->Radius);
ix = mContactTime*vx + cx;
iy = mContactTime*vy + cy;
iz = mContactTime*vz + cz;
return 1;
}
else if (crossY < (Real)0 && crossZ >= (Real)0)
{
// x edge region, check y,z planes.
return FindEdgeRegionIntersection(ey, ex, ez, cy, cx, cz, vy, vx,
vz, iy, ix, iz, false);
}
else if (crossZ < (Real)0 && crossX < (Real)0)
{
// y edge region, check x,z planes.
return FindEdgeRegionIntersection(ex, ey, ez, cx, cy, cz, vx, vy,
vz, ix, iy, iz, false);
}
else // crossY >= 0 && crossX >= 0
{
// z edge region, check x,y planes.
return FindEdgeRegionIntersection(ex, ez, ey, cx, cz, cy, vx, vz,
vy, ix, iz, iy, false);
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class IntrBox3Sphere3<float>;
template WM5_MATHEMATICS_ITEM
class IntrBox3Sphere3<double>;
//----------------------------------------------------------------------------
}
|