1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5IntrCircle3Plane3.h"
#include "Wm5IntrPlane3Plane3.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
IntrCircle3Plane3<Real>::IntrCircle3Plane3 (const Circle3<Real>& circle,
const Plane3<Real>& plane)
:
mCircle(&circle),
mPlane(&plane)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Circle3<Real>& IntrCircle3Plane3<Real>::GetCircle () const
{
return *mCircle;
}
//----------------------------------------------------------------------------
template <typename Real>
const Plane3<Real>& IntrCircle3Plane3<Real>::GetPlane () const
{
return *mPlane;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrCircle3Plane3<Real>::Test ()
{
mQuantity = 0;
// Construct the plane of the circle.
Plane3<Real> CPlane(mCircle->Normal,mCircle->Center);
// Compute the intersection of this plane with the input plane.
IntrPlane3Plane3<Real> intr(*mPlane,CPlane);
if (!intr.Find())
{
// Planes are parallel and nonintersecting.
mIntersectionType = IT_EMPTY;
return false;
}
if (intr.GetIntersectionType() == IT_PLANE)
{
// Planes are the same, the circle is the common intersection set.
mIntersectionType = IT_OTHER;
return true;
}
// The planes intersect in a line.
const Line3<Real>& line = intr.GetIntersectionLine();
// Locate one or two points that are on the circle and line. If the
// line is t*D+P, the circle center is C, and the circle radius is r,
// then r^2 = |t*D+P-C|^2 = |D|^2*t^2 + 2*Dot(D,P-C)*t + |P-C|^2. This
// is a quadratic equation of the form: a2*t^2 + 2*a1*t + a0 = 0.
Vector3<Real> diff = line.Origin - mCircle->Center;
Real a2 = line.Direction.SquaredLength();
Real a1 = diff.Dot(line.Direction);
Real a0 = diff.SquaredLength() - mCircle->Radius*mCircle->Radius;
// Real-valued roots imply an intersection.
Real discr = a1*a1 - a0*a2;
mIntersectionType = (discr >= (Real)0 ? IT_POINT : IT_EMPTY);
return mIntersectionType != IT_EMPTY;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrCircle3Plane3<Real>::Find ()
{
mQuantity = 0;
// Construct the plane of the circle.
Plane3<Real> CPlane(mCircle->Normal,mCircle->Center);
// Compute the intersection of this plane with the input plane.
IntrPlane3Plane3<Real> intr(*mPlane,CPlane);
if (!intr.Find())
{
// Planes are parallel and nonintersecting.
mIntersectionType = IT_EMPTY;
return false;
}
if (intr.GetIntersectionType() == IT_PLANE)
{
// Planes are the same, the circle is the common intersection set.
mIntersectionType = IT_OTHER;
return true;
}
// The planes intersect in a line.
const Line3<Real>& line = intr.GetIntersectionLine();
// Locate one or two points that are on the circle and line. If the
// line is t*D+P, the circle center is C, and the circle radius is r,
// then r^2 = |t*D+P-C|^2 = |D|^2*t^2 + 2*Dot(D,P-C)*t + |P-C|^2. This
// is a quadratic equation of the form: a2*t^2 + 2*a1*t + a0 = 0.
Vector3<Real> diff = line.Origin - mCircle->Center;
Real a2 = line.Direction.SquaredLength();
Real a1 = diff.Dot(line.Direction);
Real a0 = diff.SquaredLength() - mCircle->Radius*mCircle->Radius;
Real discr = a1*a1 - a0*a2;
if (discr < (Real)0)
{
// No real roots, the circle does not intersect the plane.
mIntersectionType = IT_EMPTY;
return false;
}
mIntersectionType = IT_POINT;
Real inv = ((Real)1)/a2;
if (discr < Math<Real>::ZERO_TOLERANCE)
{
// One repeated root, the circle just touches the plane.
mQuantity = 1;
mPoint[0] = line.Origin - (a1*inv)*line.Direction;
return true;
}
// Two distinct, real-valued roots, the circle intersects the plane in
// two points.
Real root = Math<Real>::Sqrt(discr);
mQuantity = 2;
mPoint[0] = line.Origin - ((a1 + root)*inv)*line.Direction;
mPoint[1] = line.Origin - ((a1 - root)*inv)*line.Direction;
return true;
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrCircle3Plane3<Real>::GetQuantity () const
{
return mQuantity;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector3<Real>& IntrCircle3Plane3<Real>::GetPoint (int i) const
{
return mPoint[i];
}
//----------------------------------------------------------------------------
template <typename Real>
const Circle3<Real>& IntrCircle3Plane3<Real>::GetIntersectionCircle () const
{
return *mCircle;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class IntrCircle3Plane3<float>;
template WM5_MATHEMATICS_ITEM
class IntrCircle3Plane3<double>;
//----------------------------------------------------------------------------
}
|