1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5IntrLine3Capsule3.h"
#include "Wm5DistLine3Segment3.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
IntrLine3Capsule3<Real>::IntrLine3Capsule3 (const Line3<Real>& line,
const Capsule3<Real>& capsule)
:
mLine(&line),
mCapsule(&capsule)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Line3<Real>& IntrLine3Capsule3<Real>::GetLine () const
{
return *mLine;
}
//----------------------------------------------------------------------------
template <typename Real>
const Capsule3<Real>& IntrLine3Capsule3<Real>::GetCapsule () const
{
return *mCapsule;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrLine3Capsule3<Real>::Test ()
{
Real distance = DistLine3Segment3<Real>(*mLine, mCapsule->Segment).Get();
return distance <= mCapsule->Radius;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrLine3Capsule3<Real>::Find ()
{
Real t[2];
mQuantity = Find(mLine->Origin, mLine->Direction, *mCapsule, t);
for (int i = 0; i < mQuantity; ++i)
{
mPoint[i] = mLine->Origin + t[i]*mLine->Direction;
}
if (mQuantity == 2)
{
mIntersectionType = IT_SEGMENT;
}
else if (mQuantity == 1)
{
mIntersectionType = IT_POINT;
}
else
{
mIntersectionType = IT_EMPTY;
}
return mIntersectionType != IT_EMPTY;
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrLine3Capsule3<Real>::GetQuantity () const
{
return mQuantity;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector3<Real>& IntrLine3Capsule3<Real>::GetPoint (int i) const
{
return mPoint[i];
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrLine3Capsule3<Real>::Find (const Vector3<Real>& origin,
const Vector3<Real>& dir, const Capsule3<Real>& capsule, Real t[2])
{
// Create a coordinate system for the capsule. In this system, the
// capsule segment center C is the origin and the capsule axis direction
// W is the z-axis. U and V are the other coordinate axis directions.
// If P = x*U+y*V+z*W, the cylinder containing the capsule wall is
// x^2 + y^2 = r^2, where r is the capsule radius. The finite cylinder
// that makes up the capsule minus its hemispherical end caps has z-values
// |z| <= e, where e is the extent of the capsule segment. The top
// hemisphere cap is x^2+y^2+(z-e)^2 = r^2 for z >= e, and the bottom
// hemisphere cap is x^2+y^2+(z+e)^2 = r^2 for z <= -e.
Vector3<Real> U, V, W = capsule.Segment.Direction;
Vector3<Real>::GenerateComplementBasis(U, V, W);
Real rSqr = capsule.Radius*capsule.Radius;
Real extent = capsule.Segment.Extent;
// Convert incoming line origin to capsule coordinates.
Vector3<Real> diff = origin - capsule.Segment.Center;
Vector3<Real> P(U.Dot(diff), V.Dot(diff), W.Dot(diff));
// Get the z-value, in capsule coordinates, of the incoming line's
// unit-length direction.
Real dz = W.Dot(dir);
if (Math<Real>::FAbs(dz) >= (Real)1 - Math<Real>::ZERO_TOLERANCE)
{
// The line is parallel to the capsule axis. Determine whether the
// line intersects the capsule hemispheres.
Real radialSqrDist = rSqr - P.X()*P.X() - P.Y()*P.Y();
if (radialSqrDist < (Real)0)
{
// Line outside the cylinder of the capsule, no intersection.
return 0;
}
// line intersects the hemispherical caps
Real zOffset = Math<Real>::Sqrt(radialSqrDist) + extent;
if (dz > (Real)0)
{
t[0] = -P.Z() - zOffset;
t[1] = -P.Z() + zOffset;
}
else
{
t[0] = P.Z() - zOffset;
t[1] = P.Z() + zOffset;
}
return 2;
}
// Convert incoming line unit-length direction to capsule coordinates.
Vector3<Real> D(U.Dot(dir), V.Dot(dir), dz);
// Test intersection of line P+t*D with infinite cylinder x^2+y^2 = r^2.
// This reduces to computing the roots of a quadratic equation. If
// P = (px,py,pz) and D = (dx,dy,dz), then the quadratic equation is
// (dx^2+dy^2)*t^2 + 2*(px*dx+py*dy)*t + (px^2+py^2-r^2) = 0
Real a0 = P.X()*P.X() + P.Y()*P.Y() - rSqr;
Real a1 = P.X()*D.X() + P.Y()*D.Y();
Real a2 = D.X()*D.X() + D.Y()*D.Y();
Real discr = a1*a1 - a0*a2;
if (discr < (Real)0)
{
// Line does not intersect infinite cylinder.
return 0;
}
Real root, inv, tValue, zValue;
int quantity = 0;
if (discr > Math<Real>::ZERO_TOLERANCE)
{
// Line intersects infinite cylinder in two places.
root = Math<Real>::Sqrt(discr);
inv = ((Real)1)/a2;
tValue = (-a1 - root)*inv;
zValue = P.Z() + tValue*D.Z();
if (Math<Real>::FAbs(zValue) <= extent)
{
t[quantity++] = tValue;
}
tValue = (-a1 + root)*inv;
zValue = P.Z() + tValue*D.Z();
if (Math<Real>::FAbs(zValue) <= extent)
{
t[quantity++] = tValue;
}
if (quantity == 2)
{
// Line intersects capsule wall in two places.
return 2;
}
}
else
{
// Line is tangent to infinite cylinder.
tValue = -a1/a2;
zValue = P.Z() + tValue*D.Z();
if (Math<Real>::FAbs(zValue) <= extent)
{
t[0] = tValue;
return 1;
}
}
// Test intersection with bottom hemisphere. The quadratic equation is
// t^2 + 2*(px*dx+py*dy+(pz+e)*dz)*t + (px^2+py^2+(pz+e)^2-r^2) = 0
// Use the fact that currently a1 = px*dx+py*dy and a0 = px^2+py^2-r^2.
// The leading coefficient is a2 = 1, so no need to include in the
// construction.
Real PZpE = P.Z() + extent;
a1 += PZpE*D.Z();
a0 += PZpE*PZpE;
discr = a1*a1 - a0;
if (discr > Math<Real>::ZERO_TOLERANCE)
{
root = Math<Real>::Sqrt(discr);
tValue = -a1 - root;
zValue = P.Z() + tValue*D.Z();
if (zValue <= -extent)
{
t[quantity++] = tValue;
if (quantity == 2)
{
if (t[0] > t[1])
{
Real save = t[0];
t[0] = t[1];
t[1] = save;
}
return 2;
}
}
tValue = -a1 + root;
zValue = P.Z() + tValue*D.Z();
if (zValue <= -extent)
{
t[quantity++] = tValue;
if (quantity == 2)
{
if (t[0] > t[1])
{
Real save = t[0];
t[0] = t[1];
t[1] = save;
}
return 2;
}
}
}
else if (Math<Real>::FAbs(discr) <= Math<Real>::ZERO_TOLERANCE)
{
tValue = -a1;
zValue = P.Z() + tValue*D.Z();
if (zValue <= -extent)
{
t[quantity++] = tValue;
if (quantity == 2)
{
if (t[0] > t[1])
{
Real save = t[0];
t[0] = t[1];
t[1] = save;
}
return 2;
}
}
}
// Test intersection with top hemisphere. The quadratic equation is
// t^2 + 2*(px*dx+py*dy+(pz-e)*dz)*t + (px^2+py^2+(pz-e)^2-r^2) = 0
// Use the fact that currently a1 = px*dx+py*dy+(pz+e)*dz and
// a0 = px^2+py^2+(pz+e)^2-r^2. The leading coefficient is a2 = 1, so
// no need to include in the construction.
a1 -= ((Real)2)*extent*D.Z();
a0 -= ((Real)4)*extent*P.Z();
discr = a1*a1 - a0;
if (discr > Math<Real>::ZERO_TOLERANCE)
{
root = Math<Real>::Sqrt(discr);
tValue = -a1 - root;
zValue = P.Z() + tValue*D.Z();
if (zValue >= extent)
{
t[quantity++] = tValue;
if (quantity == 2)
{
if (t[0] > t[1])
{
Real save = t[0];
t[0] = t[1];
t[1] = save;
}
return 2;
}
}
tValue = -a1 + root;
zValue = P.Z() + tValue*D.Z();
if (zValue >= extent)
{
t[quantity++] = tValue;
if (quantity == 2)
{
if (t[0] > t[1])
{
Real save = t[0];
t[0] = t[1];
t[1] = save;
}
return 2;
}
}
}
else if (Math<Real>::FAbs(discr) <= Math<Real>::ZERO_TOLERANCE)
{
tValue = -a1;
zValue = P.Z() + tValue*D.Z();
if (zValue >= extent)
{
t[quantity++] = tValue;
if (quantity == 2)
{
if (t[0] > t[1])
{
Real save = t[0];
t[0] = t[1];
t[1] = save;
}
return 2;
}
}
}
return quantity;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class IntrLine3Capsule3<float>;
template WM5_MATHEMATICS_ITEM
class IntrLine3Capsule3<double>;
//----------------------------------------------------------------------------
}
|