File: Wm5IntrLine3Cone3.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 90,124 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 40
file content (200 lines) | stat: -rw-r--r-- 7,209 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)

#include "Wm5MathematicsPCH.h"
#include "Wm5IntrLine3Cone3.h"

namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
IntrLine3Cone3<Real>::IntrLine3Cone3 (const Line3<Real>& line,
    const Cone3<Real>& cone)
    :
    mLine(&line),
    mCone(&cone)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Line3<Real>& IntrLine3Cone3<Real>::GetLine () const
{
    return *mLine;
}
//----------------------------------------------------------------------------
template <typename Real>
const Cone3<Real>& IntrLine3Cone3<Real>::GetCone () const
{
    return *mCone;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrLine3Cone3<Real>::Find ()
{
    // Set up the quadratic Q(t) = c2*t^2 + 2*c1*t + c0 that corresponds to
    // the cone.  Let the vertex be V, the unit-length direction vector be A,
    // and the angle measured from the cone axis to the cone wall be Theta,
    // and define g = cos(Theta).  A point X is on the cone wall whenever
    // Dot(A,(X-V)/|X-V|) = g.  Square this equation and factor to obtain
    //   (X-V)^T * (A*A^T - g^2*I) * (X-V) = 0
    // where the superscript T denotes the transpose operator.  This defines
    // a double-sided cone.  The line is L(t) = P + t*D, where P is the line
    // origin and D is a unit-length direction vector.  Substituting
    // X = L(t) into the cone equation above leads to Q(t) = 0.  Since we
    // want only intersection points on the single-sided cone that lives in
    // the half-space pointed to by A, any point L(t) generated by a root of
    // Q(t) = 0 must be tested for Dot(A,L(t)-V) >= 0.
    Real AdD = mCone->Axis.Dot(mLine->Direction);
    Real cosSqr = mCone->CosAngle*mCone->CosAngle;
    Vector3<Real> E = mLine->Origin - mCone->Vertex;
    Real AdE = mCone->Axis.Dot(E);
    Real DdE = mLine->Direction.Dot(E);
    Real EdE = E.Dot(E);
    Real c2 = AdD*AdD - cosSqr;
    Real c1 = AdD*AdE - cosSqr*DdE;
    Real c0 = AdE*AdE - cosSqr*EdE;
    Real dot;

    // Solve the quadratic.  Keep only those X for which Dot(A,X-V) >= 0.
    if (Math<Real>::FAbs(c2) >= Math<Real>::ZERO_TOLERANCE)
    {
        // c2 != 0
        Real discr = c1*c1 - c0*c2;
        if (discr < (Real)0)
        {
            // Q(t) = 0 has no real-valued roots.  The line does not
            // intersect the double-sided cone.
            mIntersectionType = IT_EMPTY;
            mQuantity = 0;
        }
        else if (discr > Math<Real>::ZERO_TOLERANCE)
        {
            // Q(t) = 0 has two distinct real-valued roots.  However, one or
            // both of them might intersect the portion of the double-sided
            // cone "behind" the vertex.  We are interested only in those
            // intersections "in front" of the vertex.
            Real root = Math<Real>::Sqrt(discr);
            Real invC2 = ((Real)1)/c2;
            mQuantity = 0;

            Real t = (-c1 - root)*invC2;
            mPoint[mQuantity] = mLine->Origin + t*mLine->Direction;
            E = mPoint[mQuantity] - mCone->Vertex;
            dot = E.Dot(mCone->Axis);
            if (dot > (Real)0)
            {
                mQuantity++;
            }

            t = (-c1 + root)*invC2;
            mPoint[mQuantity] = mLine->Origin + t*mLine->Direction;
            E = mPoint[mQuantity] - mCone->Vertex;
            dot = E.Dot(mCone->Axis);
            if (dot > (Real)0)
            {
                mQuantity++;
            }

            if (mQuantity == 2)
            {
                // The line intersects the single-sided cone in front of the
                // vertex twice.
                mIntersectionType = IT_SEGMENT;
            }
            else if (mQuantity == 1)
            {
                // The line intersects the single-sided cone in front of the
                // vertex once.  The other intersection is with the
                // single-sided cone behind the vertex.
                mIntersectionType = IT_RAY;
                mPoint[mQuantity++] = mLine->Direction;
            }
            else
            {
                // The line intersects the single-sided cone behind the vertex
                // twice.
                mIntersectionType = IT_EMPTY;
            }
        }
        else
        {
            // One repeated real root (line is tangent to the cone).
            mPoint[0] = mLine->Origin - (c1/c2)*mLine->Direction;
            E = mPoint[0] - mCone->Vertex;
            if (E.Dot(mCone->Axis) > (Real)0)
            {
                mIntersectionType = IT_POINT;
                mQuantity = 1;
            }
            else
            {
                mIntersectionType = IT_EMPTY;
                mQuantity = 0;
            }
        }
    }
    else if (Math<Real>::FAbs(c1) >= Math<Real>::ZERO_TOLERANCE)
    {
        // c2 = 0, c1 != 0 (D is a direction vector on the cone boundary)
        mPoint[0] = mLine->Origin - (((Real)0.5)*c0/c1)*mLine->Direction;
        E = mPoint[0] - mCone->Vertex;
        dot = E.Dot(mCone->Axis);
        if (dot > (Real)0)
        {
            mIntersectionType = IT_RAY;
            mQuantity = 2;
            mPoint[1] = mLine->Direction;
        }
        else
        {
            mIntersectionType = IT_EMPTY;
            mQuantity = 0;
        }
    }
    else if (Math<Real>::FAbs(c0) >= Math<Real>::ZERO_TOLERANCE)
    {
        // c2 = c1 = 0, c0 != 0
        mIntersectionType = IT_EMPTY;
        mQuantity = 0;
    }
    else
    {
        // c2 = c1 = c0 = 0, cone contains ray V+t*D where V is cone vertex
        // and D is the line direction.
        mIntersectionType = IT_RAY;
        mQuantity = 2;
        mPoint[0] = mCone->Vertex;
        mPoint[1] = mLine->Direction;
    }

    return mIntersectionType != IT_EMPTY;
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrLine3Cone3<Real>::GetQuantity () const
{
    return mQuantity;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector3<Real>& IntrLine3Cone3<Real>::GetPoint (int i) const
{
    return mPoint[i];
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class IntrLine3Cone3<float>;

template WM5_MATHEMATICS_ITEM
class IntrLine3Cone3<double>;
//----------------------------------------------------------------------------
}