1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5IntrLine3Triangle3.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
IntrLine3Triangle3<Real>::IntrLine3Triangle3 (const Line3<Real>& rkLine,
const Triangle3<Real>& rkTriangle)
:
mLine(&rkLine),
mTriangle(&rkTriangle)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Line3<Real>& IntrLine3Triangle3<Real>::GetLine () const
{
return *mLine;
}
//----------------------------------------------------------------------------
template <typename Real>
const Triangle3<Real>& IntrLine3Triangle3<Real>::GetTriangle () const
{
return *mTriangle;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrLine3Triangle3<Real>::Test ()
{
// Compute the offset origin, edges, and normal.
Vector3<Real> diff = mLine->Origin - mTriangle->V[0];
Vector3<Real> edge1 = mTriangle->V[1] - mTriangle->V[0];
Vector3<Real> edge2 = mTriangle->V[2] - mTriangle->V[0];
Vector3<Real> normal = edge1.Cross(edge2);
// Solve Q + t*D = b1*E1 + b2*E2 (Q = diff, D = line direction,
// E1 = edge1, E2 = edge2, N = Cross(E1,E2)) by
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
Real DdN = mLine->Direction.Dot(normal);
Real sign;
if (DdN > Math<Real>::ZERO_TOLERANCE)
{
sign = (Real)1;
}
else if (DdN < -Math<Real>::ZERO_TOLERANCE)
{
sign = (Real)-1;
DdN = -DdN;
}
else
{
// Line and triangle are parallel, call it a "no intersection"
// even if the line does intersect.
mIntersectionType = IT_EMPTY;
return false;
}
Real DdQxE2 = sign*mLine->Direction.Dot(diff.Cross(edge2));
if (DdQxE2 >= (Real)0)
{
Real DdE1xQ = sign*mLine->Direction.Dot(edge1.Cross(diff));
if (DdE1xQ >= (Real)0)
{
if (DdQxE2 + DdE1xQ <= DdN)
{
// Line intersects triangle.
mIntersectionType = IT_POINT;
return true;
}
// else: b1+b2 > 1, no intersection
}
// else: b2 < 0, no intersection
}
// else: b1 < 0, no intersection
mIntersectionType = IT_EMPTY;
return false;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrLine3Triangle3<Real>::Find ()
{
// Compute the offset origin, edges, and normal.
Vector3<Real> diff = mLine->Origin - mTriangle->V[0];
Vector3<Real> edge1 = mTriangle->V[1] - mTriangle->V[0];
Vector3<Real> edge2 = mTriangle->V[2] - mTriangle->V[0];
Vector3<Real> normal = edge1.Cross(edge2);
// Solve Q + t*D = b1*E1 + b2*E2 (Q = diff, D = line direction,
// E1 = edge1, E2 = edge2, N = Cross(E1,E2)) by
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
Real DdN = mLine->Direction.Dot(normal);
Real sign;
if (DdN > Math<Real>::ZERO_TOLERANCE)
{
sign = (Real)1;
}
else if (DdN < -Math<Real>::ZERO_TOLERANCE)
{
sign = (Real)-1;
DdN = -DdN;
}
else
{
// Line and triangle are parallel, call it a "no intersection"
// even if the line does intersect.
mIntersectionType = IT_EMPTY;
return false;
}
Real DdQxE2 = sign*mLine->Direction.Dot(diff.Cross(edge2));
if (DdQxE2 >= (Real)0)
{
Real DdE1xQ = sign*mLine->Direction.Dot(edge1.Cross(diff));
if (DdE1xQ >= (Real)0)
{
if (DdQxE2 + DdE1xQ <= DdN)
{
// Line intersects triangle.
Real QdN = -sign*diff.Dot(normal);
Real inv = ((Real)1)/DdN;
mLineParameter = QdN*inv;
mTriBary1 = DdQxE2*inv;
mTriBary2 = DdE1xQ*inv;
mTriBary0 = (Real)1 - mTriBary1 - mTriBary2;
mIntersectionType = IT_POINT;
return true;
}
// else: b1+b2 > 1, no intersection
}
// else: b2 < 0, no intersection
}
// else: b1 < 0, no intersection
return false;
}
//----------------------------------------------------------------------------
template <typename Real>
Real IntrLine3Triangle3<Real>::GetLineParameter () const
{
return mLineParameter;
}
//----------------------------------------------------------------------------
template <typename Real>
Real IntrLine3Triangle3<Real>::GetTriBary0 () const
{
return mTriBary0;
}
//----------------------------------------------------------------------------
template <typename Real>
Real IntrLine3Triangle3<Real>::GetTriBary1 () const
{
return mTriBary1;
}
//----------------------------------------------------------------------------
template <typename Real>
Real IntrLine3Triangle3<Real>::GetTriBary2 () const
{
return mTriBary2;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class IntrLine3Triangle3<float>;
template WM5_MATHEMATICS_ITEM
class IntrLine3Triangle3<double>;
//----------------------------------------------------------------------------
}
|