File: Wm5IntrPlane3Plane3.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 90,124 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 40
file content (258 lines) | stat: -rw-r--r-- 9,403 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)

#include "Wm5MathematicsPCH.h"
#include "Wm5IntrPlane3Plane3.h"

namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
IntrPlane3Plane3<Real>::IntrPlane3Plane3 (
    const Plane3<Real>& rkPlane0, const Plane3<Real>& rkPlane1)
    :
    mPlane0(&rkPlane0),
    mPlane1(&rkPlane1)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Plane3<Real>& IntrPlane3Plane3<Real>::GetPlane0 () const
{
    return *mPlane0;
}
//----------------------------------------------------------------------------
template <typename Real>
const Plane3<Real>& IntrPlane3Plane3<Real>::GetPlane1 () const
{
    return *mPlane1;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrPlane3Plane3<Real>::Test ()
{
    // If Cross(N0,N1) is zero, then either planes are parallel and separated
    // or the same plane.  In both cases, 'false' is returned.  Otherwise, the
    // planes intersect.  To avoid subtle differences in reporting between
    // Test() and Find(), the same parallel test is used.  Mathematically,
    //   |Cross(N0,N1)|^2 = Dot(N0,N0)*Dot(N1,N1)-Dot(N0,N1)^2
    //                    = 1 - Dot(N0,N1)^2
    // The last equality is true since planes are required to have unit-length
    // normal vectors.  The test |Cross(N0,N1)| = 0 is the same as
    // |Dot(N0,N1)| = 1.  I test the latter condition in Test() and Find().

    Real dot = mPlane0->Normal.Dot(mPlane1->Normal);
    return Math<Real>::FAbs(dot) < (Real)1 - Math<Real>::ZERO_TOLERANCE;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrPlane3Plane3<Real>::Find ()
{
    // If N0 and N1 are parallel, either the planes are parallel and separated
    // or the same plane.  In both cases, 'false' is returned.  Otherwise,
    // the intersection line is
    //   L(t) = t*Cross(N0,N1)/|Cross(N0,N1)| + c0*N0 + c1*N1
    // for some coefficients c0 and c1 and for t any real number (the line
    // parameter).  Taking dot products with the normals,
    //   d0 = Dot(N0,L) = c0*Dot(N0,N0) + c1*Dot(N0,N1) = c0 + c1*d
    //   d1 = Dot(N1,L) = c0*Dot(N0,N1) + c1*Dot(N1,N1) = c0*d + c1
    // where d = Dot(N0,N1).  These are two equations in two unknowns.  The
    // solution is
    //   c0 = (d0 - d*d1)/det
    //   c1 = (d1 - d*d0)/det
    // where det = 1 - d^2.

    Real dot = mPlane0->Normal.Dot(mPlane1->Normal);
    if (Math<Real>::FAbs(dot) >= (Real)1 - Math<Real>::ZERO_TOLERANCE)
    {
        // The planes are parallel.  Check if they are coplanar.
        Real cDiff;
        if (dot >= (Real)0)
        {
            // Normals are in same direction, need to look at c0-c1.
            cDiff = mPlane0->Constant - mPlane1->Constant;
        }
        else
        {
            // Normals are in opposite directions, need to look at c0+c1.
            cDiff = mPlane0->Constant + mPlane1->Constant;
        }

        if (Math<Real>::FAbs(cDiff) < Math<Real>::ZERO_TOLERANCE)
        {
            // Planes are coplanar.
            mIntersectionType = IT_PLANE;
            mIntrPlane = *mPlane0;
            return true;
        }

        // Planes are parallel, but distinct.
        mIntersectionType = IT_EMPTY;
        return false;
    }

    Real invDet = ((Real)1)/((Real)1 - dot*dot);
    Real c0 = (mPlane0->Constant - dot*mPlane1->Constant)*invDet;
    Real c1 = (mPlane1->Constant - dot*mPlane0->Constant)*invDet;
    mIntersectionType = IT_LINE;
    mIntrLine.Origin = c0*mPlane0->Normal + c1*mPlane1->Normal;
    mIntrLine.Direction = mPlane0->Normal.UnitCross(mPlane1->Normal);
    return true;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrPlane3Plane3<Real>::Test (Real tmax,
    const Vector3<Real>& velocity0, const Vector3<Real>& velocity1)
{
    Real dot = mPlane0->Normal.Dot(mPlane1->Normal);
    if (Math<Real>::FAbs(dot) < (Real)1 - Math<Real>::ZERO_TOLERANCE)
    {
        // The planes are initially intersecting.  Linear velocities will
        // not change the fact that they are intersecting.
        mContactTime = (Real)0;
        mIntersectionType = IT_LINE;
        return true;
    }

    // Check if planes are already coplanar.
    Real cDiff;
    if (dot >= (Real)0)
    {
        // Normals are in same direction, need to look at c0-c1.
        cDiff = mPlane0->Constant - mPlane1->Constant;
    }
    else
    {
        // Normals are in opposite directions, need to look at c0+c1.
        cDiff = mPlane0->Constant + mPlane1->Constant;
    }

    if (Math<Real>::FAbs(cDiff) < Math<Real>::ZERO_TOLERANCE)
    {
        // Planes are initially the same.
        mContactTime = (Real)0;
        mIntersectionType = IT_PLANE;
        return true;
    }

    // The planes are parallel and separated.  Determine when they will
    // become coplanar.
    Vector3<Real> relVelocity = velocity1 - velocity0;
    dot = mPlane0->Normal.Dot(relVelocity);
    if (Math<Real>::FAbs(dot) < Math<Real>::ZERO_TOLERANCE)
    {
        // The relative motion of the planes keeps them parallel.
        mIntersectionType = IT_EMPTY;
        return false;
    }

    mContactTime = cDiff/dot;
    if ((Real)0 <= mContactTime && mContactTime <= tmax)
    {
        // The planes are moving towards each other and will meet within the
        // specified time interval.
        mIntersectionType = IT_PLANE;
        return true;
    }

    mIntersectionType = IT_EMPTY;
    return false;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrPlane3Plane3<Real>::Find (Real tmax,
    const Vector3<Real>& velocity0, const Vector3<Real>& velocity1)
{
    Real dot = mPlane0->Normal.Dot(mPlane1->Normal);
    if (Math<Real>::FAbs(dot) < (Real)1 - Math<Real>::ZERO_TOLERANCE)
    {
        // The planes are initially intersecting.  Linear velocities will
        // not change the fact that they are intersecting.
        mContactTime = (Real)0;

        Real invDet = ((Real)1)/((Real)1 - dot*dot);
        Real c0 = (mPlane0->Constant - dot*mPlane1->Constant)*invDet;
        Real c1 = (mPlane1->Constant - dot*mPlane0->Constant)*invDet;
        mIntersectionType = IT_LINE;
        mIntrLine.Origin = c0*mPlane0->Normal + c1*mPlane1->Normal;
        mIntrLine.Direction = mPlane0->Normal.UnitCross(mPlane1->Normal);
        return true;
    }

    // Check if planes are already coplanar.
    Real cDiff;
    if (dot >= (Real)0)
    {
        // Normals are in same direction, need to look at c0-c1.
        cDiff = mPlane0->Constant - mPlane1->Constant;
    }
    else
    {
        // Normals are in opposite directions, need to look at c0+c1.
        cDiff = mPlane0->Constant + mPlane1->Constant;
    }

    if (Math<Real>::FAbs(cDiff) < Math<Real>::ZERO_TOLERANCE)
    {
        // Planes are initially the same.
        mContactTime = (Real)0;
        mIntersectionType = IT_PLANE;
        mIntrPlane = *mPlane0;
        return true;
    }

    // The planes are parallel and separated.  Determine when they will
    // become coplanar.
    Vector3<Real> relVelocity = velocity1 - velocity0;
    dot = mPlane0->Normal.Dot(relVelocity);
    if (Math<Real>::FAbs(dot) < Math<Real>::ZERO_TOLERANCE)
    {
        // The relative motion of the planes keeps them parallel.
        mIntersectionType = IT_EMPTY;
        return false;
    }

    mContactTime = cDiff/dot;
    if ((Real)0 <= mContactTime && mContactTime <= tmax)
    {
        // The planes are moving towards each other and will meet within the
        // specified time interval.
        mIntersectionType = IT_PLANE;
        mIntrPlane.Normal = mPlane0->Normal;
        mIntrPlane.Constant = mPlane0->Constant +
            mContactTime*(mPlane0->Normal.Dot(velocity0));
        return true;
    }

    mIntersectionType = IT_EMPTY;
    return false;
}
//----------------------------------------------------------------------------
template <typename Real>
const Line3<Real>& IntrPlane3Plane3<Real>::GetIntersectionLine () const
{
    return mIntrLine;
}
//----------------------------------------------------------------------------
template <typename Real>
const Plane3<Real>& IntrPlane3Plane3<Real>::GetIntersectionPlane () const
{
    return mIntrPlane;
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class IntrPlane3Plane3<float>;

template WM5_MATHEMATICS_ITEM
class IntrPlane3Plane3<double>;
//----------------------------------------------------------------------------
}