File: Wm5IntrRay3Ellipsoid3.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 90,124 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 40
file content (170 lines) | stat: -rw-r--r-- 5,380 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)

#include "Wm5MathematicsPCH.h"
#include "Wm5IntrRay3Ellipsoid3.h"

namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
IntrRay3Ellipsoid3<Real>::IntrRay3Ellipsoid3 (const Ray3<Real>& rkRay,
    const Ellipsoid3<Real>& rkEllipsoid)
    :
    mRay(&rkRay),
    mEllipsoid(&rkEllipsoid)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Ray3<Real>& IntrRay3Ellipsoid3<Real>::GetRay () const
{
    return *mRay;
}
//----------------------------------------------------------------------------
template <typename Real>
const Ellipsoid3<Real>& IntrRay3Ellipsoid3<Real>::GetEllipsoid () const
{
    return *mEllipsoid;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrRay3Ellipsoid3<Real>::Test ()
{
    // The ellipsoid is (X-K)^T*M*(X-K)-1 = 0 and the ray is X = P+t*D.
    // Substitute the ray equation into the ellipsoid equation to obtain
    // a quadratic equation
    //   Q(t) = a2*t^2 + 2*a1*t + a0 = 0
    // where a2 = D^T*M*D, a1 = D^T*M*(P-K), and a0 = (P-K)^T*M*(P-K)-1.

    Matrix3<Real> M;
    mEllipsoid->GetM(M);

    Vector3<Real> diff = mRay->Origin - mEllipsoid->Center;
    Vector3<Real> matDir = M*mRay->Direction;
    Vector3<Real> matDiff = M*diff;
    Real a2 = mRay->Direction.Dot(matDir);
    Real a1 = mRay->Direction.Dot(matDiff);
    Real a0 = diff.Dot(matDiff) - (Real)1;

    // No intersection if Q(t) has no real roots.
    Real discr = a1*a1 - a0*a2;
    if (discr < (Real)0)
    {
        return false;
    }

    // Test whether ray origin is inside ellipsoid.
    if (a0 <= (Real)0)
    {
        return true;
    }

    // At this point, Q(0) = a0 > 0 and Q(t) has real roots.  It is also
    // the case that a2 > 0, since M is positive definite, implying that
    // D^T*M*D > 0 for any nonzero vector D.  Thus, an intersection occurs
    // only when Q'(0) < 0.
    return a1 < (Real)0;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrRay3Ellipsoid3<Real>::Find ()
{
    // The ellipsoid is (X-K)^T*M*(X-K)-1 = 0 and the line is X = P+t*D.
    // Substitute the line equation into the ellipsoid equation to obtain
    // a quadratic equation
    //   Q(t) = a2*t^2 + 2*a1*t + a0 = 0
    // where a2 = D^T*M*D, a1 = D^T*M*(P-K), and a0 = (P-K)^T*M*(P-K)-1.

    Matrix3<Real> M;
    mEllipsoid->GetM(M);

    Vector3<Real> diff = mRay->Origin - mEllipsoid->Center;
    Vector3<Real> matDir = M*mRay->Direction;
    Vector3<Real> matDiff = M*diff;
    Real a2 = mRay->Direction.Dot(matDir);
    Real a1 = mRay->Direction.Dot(matDiff);
    Real a0 = diff.Dot(matDiff) - (Real)1;

    // Intersection occurs if Q(t) has real roots with t >= 0.
    Real discr = a1*a1 - a0*a2;
    Real t[2];
    if (discr < (Real)0)
    {
        mIntersectionType = IT_EMPTY;
        mQuantity = 0;
    }
    else if (discr > (Real)0)
    {
        Real root = Math<Real>::Sqrt(discr);
        Real inv = ((Real)1)/a2;
        t[0] = (-a1 - root)*inv;
        t[1] = (-a1 + root)*inv;

        if (t[0] >= (Real)0)
        {
            mIntersectionType = IT_SEGMENT;
            mQuantity = 2;
            mPoint[0] = mRay->Origin + t[0]*mRay->Direction;
            mPoint[1] = mRay->Origin + t[1]*mRay->Direction;
        }
        else if (t[1] >= (Real)0)
        {
            mIntersectionType = IT_POINT;
            mQuantity = 1;
            mPoint[0] = mRay->Origin + t[1]*mRay->Direction;
            t[0] = t[1];
        }
        else
        {
            mIntersectionType = IT_EMPTY;
            mQuantity = 0;
        }
    }
    else
    {
        t[0] = -a1/a2;
        if (t[0] >= (Real)0)
        {
            mIntersectionType = IT_POINT;
            mQuantity = 1;
            mPoint[0] = mRay->Origin + t[0]*mRay->Direction;
        }
        else
        {
            mIntersectionType = IT_EMPTY;
            mQuantity = 0;
        }
    }

    return mIntersectionType != IT_EMPTY;
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrRay3Ellipsoid3<Real>::GetQuantity () const
{
    return mQuantity;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector3<Real>& IntrRay3Ellipsoid3<Real>::GetPoint (int i) const
{
    return mPoint[i];
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class IntrRay3Ellipsoid3<float>;

template WM5_MATHEMATICS_ITEM
class IntrRay3Ellipsoid3<double>;
//----------------------------------------------------------------------------
}