1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5IntrRay3Ellipsoid3.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
IntrRay3Ellipsoid3<Real>::IntrRay3Ellipsoid3 (const Ray3<Real>& rkRay,
const Ellipsoid3<Real>& rkEllipsoid)
:
mRay(&rkRay),
mEllipsoid(&rkEllipsoid)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Ray3<Real>& IntrRay3Ellipsoid3<Real>::GetRay () const
{
return *mRay;
}
//----------------------------------------------------------------------------
template <typename Real>
const Ellipsoid3<Real>& IntrRay3Ellipsoid3<Real>::GetEllipsoid () const
{
return *mEllipsoid;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrRay3Ellipsoid3<Real>::Test ()
{
// The ellipsoid is (X-K)^T*M*(X-K)-1 = 0 and the ray is X = P+t*D.
// Substitute the ray equation into the ellipsoid equation to obtain
// a quadratic equation
// Q(t) = a2*t^2 + 2*a1*t + a0 = 0
// where a2 = D^T*M*D, a1 = D^T*M*(P-K), and a0 = (P-K)^T*M*(P-K)-1.
Matrix3<Real> M;
mEllipsoid->GetM(M);
Vector3<Real> diff = mRay->Origin - mEllipsoid->Center;
Vector3<Real> matDir = M*mRay->Direction;
Vector3<Real> matDiff = M*diff;
Real a2 = mRay->Direction.Dot(matDir);
Real a1 = mRay->Direction.Dot(matDiff);
Real a0 = diff.Dot(matDiff) - (Real)1;
// No intersection if Q(t) has no real roots.
Real discr = a1*a1 - a0*a2;
if (discr < (Real)0)
{
return false;
}
// Test whether ray origin is inside ellipsoid.
if (a0 <= (Real)0)
{
return true;
}
// At this point, Q(0) = a0 > 0 and Q(t) has real roots. It is also
// the case that a2 > 0, since M is positive definite, implying that
// D^T*M*D > 0 for any nonzero vector D. Thus, an intersection occurs
// only when Q'(0) < 0.
return a1 < (Real)0;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrRay3Ellipsoid3<Real>::Find ()
{
// The ellipsoid is (X-K)^T*M*(X-K)-1 = 0 and the line is X = P+t*D.
// Substitute the line equation into the ellipsoid equation to obtain
// a quadratic equation
// Q(t) = a2*t^2 + 2*a1*t + a0 = 0
// where a2 = D^T*M*D, a1 = D^T*M*(P-K), and a0 = (P-K)^T*M*(P-K)-1.
Matrix3<Real> M;
mEllipsoid->GetM(M);
Vector3<Real> diff = mRay->Origin - mEllipsoid->Center;
Vector3<Real> matDir = M*mRay->Direction;
Vector3<Real> matDiff = M*diff;
Real a2 = mRay->Direction.Dot(matDir);
Real a1 = mRay->Direction.Dot(matDiff);
Real a0 = diff.Dot(matDiff) - (Real)1;
// Intersection occurs if Q(t) has real roots with t >= 0.
Real discr = a1*a1 - a0*a2;
Real t[2];
if (discr < (Real)0)
{
mIntersectionType = IT_EMPTY;
mQuantity = 0;
}
else if (discr > (Real)0)
{
Real root = Math<Real>::Sqrt(discr);
Real inv = ((Real)1)/a2;
t[0] = (-a1 - root)*inv;
t[1] = (-a1 + root)*inv;
if (t[0] >= (Real)0)
{
mIntersectionType = IT_SEGMENT;
mQuantity = 2;
mPoint[0] = mRay->Origin + t[0]*mRay->Direction;
mPoint[1] = mRay->Origin + t[1]*mRay->Direction;
}
else if (t[1] >= (Real)0)
{
mIntersectionType = IT_POINT;
mQuantity = 1;
mPoint[0] = mRay->Origin + t[1]*mRay->Direction;
t[0] = t[1];
}
else
{
mIntersectionType = IT_EMPTY;
mQuantity = 0;
}
}
else
{
t[0] = -a1/a2;
if (t[0] >= (Real)0)
{
mIntersectionType = IT_POINT;
mQuantity = 1;
mPoint[0] = mRay->Origin + t[0]*mRay->Direction;
}
else
{
mIntersectionType = IT_EMPTY;
mQuantity = 0;
}
}
return mIntersectionType != IT_EMPTY;
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrRay3Ellipsoid3<Real>::GetQuantity () const
{
return mQuantity;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector3<Real>& IntrRay3Ellipsoid3<Real>::GetPoint (int i) const
{
return mPoint[i];
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class IntrRay3Ellipsoid3<float>;
template WM5_MATHEMATICS_ITEM
class IntrRay3Ellipsoid3<double>;
//----------------------------------------------------------------------------
}
|