1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5IntrSegment3Ellipsoid3.h"
#include "Wm5Intersector1.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
IntrSegment3Ellipsoid3<Real>::IntrSegment3Ellipsoid3 (
const Segment3<Real>& segment, const Ellipsoid3<Real>& ellipsoid)
:
mSegment(&segment),
mEllipsoid(&ellipsoid)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Segment3<Real>& IntrSegment3Ellipsoid3<Real>::GetSegment () const
{
return *mSegment;
}
//----------------------------------------------------------------------------
template <typename Real>
const Ellipsoid3<Real>& IntrSegment3Ellipsoid3<Real>::GetEllipsoid () const
{
return *mEllipsoid;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrSegment3Ellipsoid3<Real>::Test ()
{
// The ellipsoid is (X-K)^T*M*(X-K)-1 = 0 and the segment is X = P+t*D.
// Substitute the segment equation into the ellipsoid equation to obtain
// a quadratic equation
// Q(t) = a2*t^2 + 2*a1*t + a0 = 0
// where a2 = D^T*M*D, a1 = D^T*M*(P-K), and a0 = (P-K)^T*M*(P-K)-1.
Matrix3<Real> M;
mEllipsoid->GetM(M);
Vector3<Real> diff = mSegment->Center - mEllipsoid->Center;
Vector3<Real> matDir = M*mSegment->Direction;
Vector3<Real> matDiff = M*diff;
Real a2 = mSegment->Direction.Dot(matDir);
Real a1 = mSegment->Direction.Dot(matDiff);
Real a0 = diff.Dot(matDiff) - (Real)1;
// No intersection if Q(t) has no real roots.
Real discr = a1*a1 - a0*a2;
if (discr < (Real)0)
{
return false;
}
// Test whether segment origin is inside ellipsoid.
if (a0 <= (Real)0)
{
return true;
}
// At this point, Q(0) = a0 > 0 and Q(t) has real roots. It is also
// the case that a2 > 0, since M is positive definite, implying that
// D^T*M*D > 0 for any nonzero vector D.
Real q, qder, e = mSegment->Extent;
if (a1 >= (Real)0)
{
// Roots are possible only on [-e,0], e is the segment extent. At
// least one root occurs if Q(-e) <= 0 or if Q(-e) > 0 and Q'(-e) < 0.
q = a0 + e*(((Real)-2)*a1 + a2*e);
if (q <= (Real)0)
{
return true;
}
qder = a1 - a2*e;
if (qder < (Real)0)
{
return true;
}
}
else
{
// Roots are only possible on [0,e], e is the segment extent. At
// least one root occurs if Q(e) <= 0 or if Q(e) > 0 and Q'(e) > 0.
q = a0 + e*(((Real)2)*a1 + a2*e);
if (q <= (Real)0.0)
{
return true;
}
qder = a1 + a2*e;
if (qder < (Real)0)
{
return true;
}
}
return false;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrSegment3Ellipsoid3<Real>::Find ()
{
// The ellipsoid is (X-K)^T*M*(X-K)-1 = 0 and the line is X = P+t*D.
// Substitute the line equation into the ellipsoid equation to obtain
// a quadratic equation
// Q(t) = a2*t^2 + 2*a1*t + a0 = 0
// where a2 = D^T*M*D, a1 = D^T*M*(P-K), and a0 = (P-K)^T*M*(P-K)-1.
Matrix3<Real> M;
mEllipsoid->GetM(M);
Vector3<Real> diff = mSegment->Center - mEllipsoid->Center;
Vector3<Real> matDir = M*mSegment->Direction;
Vector3<Real> matDiff = M*diff;
Real a2 = mSegment->Direction.Dot(matDir);
Real a1 = mSegment->Direction.Dot(matDiff);
Real a0 = diff.Dot(matDiff) - (Real)1;
// Intersection occurs if Q(t) has real roots with t >= 0.
Real discr = a1*a1 - a0*a2;
Real t[2];
if (discr < (Real)0)
{
mIntersectionType = IT_EMPTY;
mQuantity = 0;
}
else if (discr > Math<Real>::ZERO_TOLERANCE)
{
Real root = Math<Real>::Sqrt(discr);
Real inv = ((Real)1)/a2;
t[0] = (-a1 - root)*inv;
t[1] = (-a1 + root)*inv;
// assert: t0 < t1 since a2 > 0
Intersector1<Real> intr(t[0], t[1], -mSegment->Extent,
mSegment->Extent);
intr.Find();
mQuantity = intr.GetNumIntersections();
if (mQuantity == 2)
{
mIntersectionType = IT_SEGMENT;
mPoint[0] = mSegment->Center + intr.GetIntersection(0) *
mSegment->Direction;
mPoint[1] = mSegment->Center + intr.GetIntersection(1) *
mSegment->Direction;
}
else if (mQuantity == 1)
{
mIntersectionType = IT_POINT;
mPoint[0] = mSegment->Center + intr.GetIntersection(0) *
mSegment->Direction;
}
else
{
mIntersectionType = IT_EMPTY;
}
}
else
{
t[0] = -a1/a2;
if (Math<Real>::FAbs(t[0]) <= mSegment->Extent)
{
mIntersectionType = IT_POINT;
mQuantity = 1;
mPoint[0] = mSegment->Center + t[0]*mSegment->Direction;
}
else
{
mIntersectionType = IT_EMPTY;
mQuantity = 0;
}
}
return mIntersectionType != IT_EMPTY;
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrSegment3Ellipsoid3<Real>::GetQuantity () const
{
return mQuantity;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector3<Real>& IntrSegment3Ellipsoid3<Real>::GetPoint (int i) const
{
return mPoint[i];
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class IntrSegment3Ellipsoid3<float>;
template WM5_MATHEMATICS_ITEM
class IntrSegment3Ellipsoid3<double>;
//----------------------------------------------------------------------------
}
|