File: Wm5IntrSegment3Sphere3.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 90,124 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 40
file content (256 lines) | stat: -rw-r--r-- 8,827 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)

#include "Wm5MathematicsPCH.h"
#include "Wm5IntrSegment3Sphere3.h"
#include "Wm5IntrSegment3Capsule3.h"

namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
IntrSegment3Sphere3<Real>::IntrSegment3Sphere3 (
    const Segment3<Real>& segment, const Sphere3<Real>& sphere)
    :
    mSegment(&segment),
    mSphere(&sphere)
{
    mQuantity = 0;
    ZeroThreshold = Math<Real>::ZERO_TOLERANCE;
}
//----------------------------------------------------------------------------
template <typename Real>
const Segment3<Real>& IntrSegment3Sphere3<Real>::GetSegment () const
{
    return *mSegment;
}
//----------------------------------------------------------------------------
template <typename Real>
const Sphere3<Real>& IntrSegment3Sphere3<Real>::GetSphere () const
{
    return *mSphere;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrSegment3Sphere3<Real>::Test ()
{
    Vector3<Real> diff = mSegment->Center - mSphere->Center;
    Real a0 = diff.Dot(diff) - mSphere->Radius*mSphere->Radius;
    Real a1 = mSegment->Direction.Dot(diff);
    Real discr = a1*a1 - a0;
    if (discr < (Real)0)
    {
        return false;
    }

    Real tmp0 = mSegment->Extent*mSegment->Extent + a0;
    Real tmp1 = ((Real)2)*a1*mSegment->Extent;
    Real qm = tmp0 - tmp1;
    Real qp = tmp0 + tmp1;
    if (qm*qp <= (Real)0)
    {
        return true;
    }

    return qm > (Real)0 && Math<Real>::FAbs(a1) < mSegment->Extent;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrSegment3Sphere3<Real>::Find ()
{
    Vector3<Real> diff = mSegment->Center - mSphere->Center;
    Real a0 = diff.Dot(diff) - mSphere->Radius*mSphere->Radius;
    Real a1 = mSegment->Direction.Dot(diff);
    Real discr = a1*a1 - a0;
    if (discr < (Real)0)
    {
        mQuantity = 0;
        return false;
    }

    Real tmp0 = mSegment->Extent*mSegment->Extent + a0;
    Real tmp1 = ((Real)2)*a1*mSegment->Extent;
    Real qm = tmp0 - tmp1;
    Real qp = tmp0 + tmp1;
    Real root;
    if (qm*qp <= (Real)0)
    {
        root = Math<Real>::Sqrt(discr);
        mSegmentParameter[0] = (qm > (Real)0 ? -a1 - root : -a1 + root);
        mPoint[0] = mSegment->Center + mSegmentParameter[0] *
            mSegment->Direction;
        mQuantity = 1;
        mIntersectionType = IT_POINT;
        return true;
    }

    if (qm > (Real)0 && Math<Real>::FAbs(a1) < mSegment->Extent)
    {
        if (discr >= ZeroThreshold)
        {
            root = Math<Real>::Sqrt(discr);
            mSegmentParameter[0] = -a1 - root;
            mSegmentParameter[1] = -a1 + root;
            mPoint[0] = mSegment->Center + mSegmentParameter[0] *
                mSegment->Direction;
            mPoint[1] = mSegment->Center + mSegmentParameter[1] *
                mSegment->Direction;
            mQuantity = 2;
            mIntersectionType = IT_SEGMENT;
        }
        else
        {
            mSegmentParameter[0] = -a1;
            mPoint[0] = mSegment->Center + mSegmentParameter[0] *
                mSegment->Direction;
            mQuantity = 1;
            mIntersectionType = IT_POINT;
        }
    }
    else
    {
        mQuantity = 0;
        mIntersectionType = IT_EMPTY;
    }

    return mQuantity > 0;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrSegment3Sphere3<Real>::Test (Real tmax,
    const Vector3<Real>& velocity0, const Vector3<Real>& velocity1)
{
    // Check if initially intersecting.
    if (Test())
    {
        return true;
    }

    // Substract the segment velocity from the sphere velocity so that
    // the calculations are based in the coordinate system of the segment.
    // In this system, the line is of course stationary.  The sphere spans
    // a capsule, but instead we will "grow" the segment by the sphere radius
    // and shrink the sphere to its center.  The problem is now to detect
    // the first time the moving center intersects the capsule formed by
    // the line segment and sphere radius.

    Capsule3<Real> capsule;
    capsule.Segment = *mSegment;
    capsule.Radius = mSphere->Radius;

    Vector3<Real> relVelocity = velocity1 - velocity0;
    Real relSpeed = relVelocity.Normalize();
    Segment3<Real> path;
    path.Extent = ((Real)0.5)*tmax*relSpeed;
    path.Direction = relVelocity;  // unit-length vector
    path.Center = mSphere->Center + path.Extent*path.Direction;

    return IntrSegment3Capsule3<Real>(path, capsule).Test();
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrSegment3Sphere3<Real>::Find (Real tmax,
    const Vector3<Real>& velocity0, const Vector3<Real>& velocity1)
{
    // Check if initially intersecting.
    if (Find())
    {
        mContactTime = (Real)0;
        mIntersectionType = IT_OTHER;
        return true;
    }

    // Substract the segment velocity from the sphere velocity so that
    // the calculations are based in the coordinate system of the segment.
    // In this system, the line is of course stationary.  The sphere spans
    // a capsule, but instead we will "grow" the segment by the sphere radius
    // and shrink the sphere to its center.  The problem is now to detect
    // the first time the moving center intersects the capsule formed by
    // the line segment and sphere radius.

    Capsule3<Real> capsule;
    capsule.Segment = *mSegment;
    capsule.Radius = mSphere->Radius;

    Vector3<Real> relVelocity = velocity1 - velocity0;
    Real relSpeed = relVelocity.Normalize();
    Segment3<Real> path;
    path.Extent = ((Real)0.5)*tmax*relSpeed;
    path.Direction = relVelocity;  // unit-length vector
    path.Center = mSphere->Center + path.Extent*path.Direction;

    IntrSegment3Capsule3<Real> intr(path, capsule);
    if (!intr.Find())
    {
        mIntersectionType = IT_EMPTY;
        return false;
    }

    // We now know the sphere will intersect the segment.  This can happen
    // either at a segment end point or at a segment interior point.  We
    // need to determine which.
    mContactTime = (intr.GetParameter(0) + path.Extent)/relSpeed;
    mQuantity = 1;
    mIntersectionType = IT_POINT;

    Vector3<Real> MCenter = mSphere->Center + mContactTime*velocity1;
    Vector3<Real> MOrigin = mSegment->Center + mContactTime*velocity0;
    Real origin = mSegment->Direction.Dot(MOrigin);
    Real negEnd = origin - mSegment->Extent;
    Real posEnd = origin + mSegment->Extent;
    Real center = mSegment->Direction.Dot(MCenter);

    if (center < negEnd)
    {
        // Intersection at segment end point P-e*D.
        mPoint[0] = MOrigin - mSegment->Extent*mSegment->Direction;
    }
    else if (center > posEnd)
    {
        // Intersection at segment end point P+e*D.
        mPoint[0] = MOrigin + mSegment->Extent*mSegment->Direction;
    }
    else
    {
        // Intersection with interior point on edge.  Use the projection
        // along direction axis to find which point that is.
        mPoint[0] = MOrigin + (center - origin)*mSegment->Direction;
    }

    return true;
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrSegment3Sphere3<Real>::GetQuantity () const
{
    return mQuantity;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector3<Real>& IntrSegment3Sphere3<Real>::GetPoint (int i) const
{
    return mPoint[i];
}
//----------------------------------------------------------------------------
template <typename Real>
Real IntrSegment3Sphere3<Real>::GetSegmentParameter (int i) const
{
    return mSegmentParameter[i];
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class IntrSegment3Sphere3<float>;

template WM5_MATHEMATICS_ITEM
class IntrSegment3Sphere3<double>;
//----------------------------------------------------------------------------
}