1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.2 (2012/06/24)
#include "Wm5MathematicsPCH.h"
#include "Wm5IntrTriangle3Sphere3.h"
#include "Wm5DistPoint3Triangle3.h"
#include "Wm5IntrSegment3Sphere3.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
IntrTriangle3Sphere3<Real>::IntrTriangle3Sphere3 (
const Triangle3<Real>& triangle, const Sphere3<Real>& sphere)
:
mTriangle(&triangle),
mSphere(&sphere)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Triangle3<Real>& IntrTriangle3Sphere3<Real>::GetTriangle () const
{
return *mTriangle;
}
//----------------------------------------------------------------------------
template <typename Real>
const Sphere3<Real>& IntrTriangle3Sphere3<Real>::GetSphere () const
{
return *mSphere;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrTriangle3Sphere3<Real>::Test ()
{
DistPoint3Triangle3<Real> calc(mSphere->Center, *mTriangle);
Real sqrDistance = calc.GetSquared();
Real rSqr = mSphere->Radius*mSphere->Radius;
return sqrDistance <= rSqr;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrTriangle3Sphere3<Real>::Find (Real tmax,
const Vector3<Real>& velocity0, const Vector3<Real>& velocity1)
{
// Get the triangle vertices.
const Vector3<Real>* V = mTriangle->V;
// Get the triangle edges.
Vector3<Real> edges[3] =
{
V[1] - V[0],
V[2] - V[1],
V[0] - V[2]
};
// Get the triangle normal.
Vector3<Real> normal = edges[1].Cross(edges[0]);
// Sphere center projection on triangle normal.
Real NdC = normal.Dot(mSphere->Center);
// Radius projected length in normal direction. This defers the square
// root to normalize normal until absolutely needed.
Real rSqr = mSphere->Radius*mSphere->Radius;
Real normRadiusSqr = normal.SquaredLength()*rSqr;
// Triangle projection on triangle normal.
Real NdT = normal.Dot(V[0]);
// Distance from sphere to triangle along the normal.
Real dist = NdC - NdT;
// Normals for the plane formed by edge i and the triangle normal.
Vector3<Real> ExN[3] =
{
edges[0].Cross(normal),
edges[1].Cross(normal),
edges[2].Cross(normal)
};
Segment3<Real> seg;
if (dist*dist <= normRadiusSqr)
{
// Sphere currently intersects the plane of the triangle.
// See which edges the sphere center is inside/outside.
bool inside[3];
for (int i = 0; i < 3; ++i)
{
inside[i] = (ExN[i].Dot(mSphere->Center) >= ExN[i].Dot(V[i]));
}
if (inside[0])
{
if (inside[1])
{
if (inside[2])
{
// Triangle inside sphere.
return false;
}
else // !inside[2]
{
// Potential intersection with edge <V2,V0>.
seg = Segment3<Real>(V[2], V[0]);
IntrSegment3Sphere3<Real> calc(seg, *mSphere);
if (calc.Find(tmax, velocity0, velocity1))
{
mContactTime = calc.GetContactTime();
mPoint = calc.GetPoint(0);
return true;
}
return false;
}
}
else // !inside[1]
{
if (inside[2])
{
// Potential intersection with edge <V1,V2>.
seg = Segment3<Real>(V[1], V[2]);
IntrSegment3Sphere3<Real> calc(seg, *mSphere);
if (calc.Find(tmax, velocity0, velocity1))
{
mContactTime = calc.GetContactTime();
mPoint = calc.GetPoint(0);
return true;
}
return false;
}
else // !inside[2]
{
// Potential intersection with edges <V1,V2>, <V2,V0>.
return FindTriangleSphereCoplanarIntersection(2, V,
ExN[2], edges[2], tmax, velocity0, velocity1);
}
}
}
else // !inside[0]
{
if (inside[1])
{
if (inside[2])
{
// Potential intersection with edge <V0,V1>.
seg = Segment3<Real>(V[0], V[1]);
IntrSegment3Sphere3<Real> calc(seg, *mSphere);
if (calc.Find(tmax, velocity0, velocity1))
{
mContactTime = calc.GetContactTime();
mPoint = calc.GetPoint(0);
return true;
}
return false;
}
else // !inside[2]
{
// Potential intersection with edges <V2,V0>, <V0,V1>.
return FindTriangleSphereCoplanarIntersection(0, V,
ExN[0], edges[0], tmax, velocity0, velocity1);
}
}
else // !inside[1]
{
if (inside[2])
{
// Potential intersection with edges <V0,V1>, <V1,V2>.
return FindTriangleSphereCoplanarIntersection(1, V,
ExN[1], edges[1], tmax, velocity0, velocity1);
}
else // !inside[2]
{
// We should not get here.
assertion(false, "Unexpected condition\n");
return false;
}
}
}
}
else
{
// Sphere does not currently intersect the plane of the triangle.
// Sphere moving, triangle stationary.
Vector3<Real> relVelocity = velocity1 - velocity0;
// Find point of intersection of the sphere and the triangle
// plane. Where this point occurs on the plane relative to the
// triangle determines the potential kind of intersection.
normal.Normalize();
// Point on sphere we care about intersecting the triangle plane.
Vector3<Real> spherePoint;
// On which side of the triangle is the sphere?
if (NdC > NdT)
{
// Positive side.
if (relVelocity.Dot(normal) >= (Real)0)
{
// Moving away, easy out.
return false;
}
spherePoint = mSphere->Center - mSphere->Radius*normal;
}
else
{
// Negative side.
if (relVelocity.Dot(normal) <= (Real)0)
{
// Moving away, easy out.
return false;
}
spherePoint = mSphere->Center + mSphere->Radius*normal;
}
// Find intersection of velocity ray and triangle plane.
// Project ray and plane onto the plane normal.
Real plane = normal.Dot(V[0]);
Real point = normal.Dot(spherePoint);
Real vel = normal.Dot(relVelocity);
Real time = (plane - point)/vel;
// Where this intersects.
Vector3<Real> intrPoint = spherePoint + time*relVelocity;
// See which edges this intersection point is inside/outside.
bool inside[3];
for (int i = 0; i < 3; ++i)
{
inside[i] = (ExN[i].Dot(intrPoint) >= ExN[i].Dot(V[i]));
}
if (inside[0])
{
if (inside[1])
{
if (inside[2])
{
// Intersects face at time time.
if (time > tmax)
{
// Intersection after tMax.
return false;
}
else
{
// intrPoint is the point in space, assuming that
// TriVel is 0. Re-adjust the point to where it
// should be, were it not.
mContactTime = time;
mPoint = intrPoint + time*velocity0;
return true;
}
}
else // !inside[2]
{
// Potential intersection with edge <V2,V0>.
seg = Segment3<Real>(V[2], V[0]);
IntrSegment3Sphere3<Real> calc(seg, *mSphere);
if (calc.Find(tmax, velocity0, velocity1))
{
mContactTime = calc.GetContactTime();
mPoint = calc.GetPoint(0);
return true;
}
return false;
}
}
else // !inside[1]
{
if (inside[2])
{
// Potential intersection with edge <V1,V2>.
seg = Segment3<Real>(V[1], V[2]);
IntrSegment3Sphere3<Real> calc(seg, *mSphere);
if (calc.Find(tmax, velocity0, velocity1))
{
mContactTime = calc.GetContactTime();
mPoint = calc.GetPoint(0);
return true;
}
return false;
}
else // !inside[2]
{
// Potential intersection with vertex V2.
return FindSphereVertexIntersection(V[2], tmax,
velocity1, velocity0);
}
}
}
else // !inside[0]
{
if (inside[1])
{
if (inside[2])
{
// Potential intersection with edge <V0,V1>.
seg = Segment3<Real>(V[0], V[1]);
IntrSegment3Sphere3<Real> calc(seg, *mSphere);
if (calc.Find(tmax, velocity0, velocity1))
{
mContactTime = calc.GetContactTime();
mPoint = calc.GetPoint(0);
return true;
}
return false;
}
else // !inside[2]
{
// Potential intersection with vertex V0.
return FindSphereVertexIntersection(V[0], tmax,
velocity1, velocity0);
}
}
else // !inside[1]
{
if (inside[2])
{
// Potential intersection with vertex V1.
return FindSphereVertexIntersection(V[1], tmax,
velocity1, velocity0);
}
else // !inside[2]
{
// We should not get here.
assertion(false, "Unexpected condition\n");
return false;
}
}
}
}
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector3<Real>& IntrTriangle3Sphere3<Real>::GetPoint () const
{
return mPoint;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrTriangle3Sphere3<Real>::FindTriangleSphereCoplanarIntersection (
int vertex, const Vector3<Real> V[3], const Vector3<Real>& sideNorm,
const Vector3<Real>& side, Real tmax, const Vector3<Real>& velocity0,
const Vector3<Real>& velocity1)
{
// vertex is the "hinge" vertex that the two potential edges that can
// be intersected by the sphere connect to, and it indexes into V.
//
// sideNorm is the normal of the plane formed by (vertex,vertex+1)
// and the tri norm, passed so as not to recalculate
// Check for intersections at time 0.
Vector3<Real> dist = V[vertex] - mSphere->Center;
if (dist.SquaredLength() < mSphere->Radius*mSphere->Radius)
{
// Already intersecting that vertex.
mContactTime = (Real)0;
return false;
}
// Tri stationary, sphere moving.
Vector3<Real> relVelocity = velocity1 - velocity0;
// Check for easy out.
if (relVelocity.Dot(dist) <= (Real)0)
{
// Moving away.
return false;
}
// Find intersection of velocity ray and side normal.
// Project ray and plane onto the plane normal.
Real plane = sideNorm.Dot(V[vertex]);
Real center = sideNorm.Dot(mSphere->Center);
Real vel = sideNorm.Dot(relVelocity);
Real factor = (plane - center)/vel;
Vector3<Real> point = mSphere->Center + factor*relVelocity;
// Find which side of the hinge vertex this lies by projecting both the
// vertex and this new point onto the triangle edge (the same edge whose
// "normal" was used to find this point).
Real fvertex = side.Dot(V[vertex]);
Real fpoint = side.Dot(point);
Vector3<Real> end0 = V[vertex], end1;
if (fpoint >= fvertex)
{
// Intersection with edge (vertex,vertex+1).
end1 = V[(vertex+1) % 3];
}
else
{
// Intersection with edge (vertex-1,vertex).
if (vertex != 0)
{
end1 = V[vertex-1];
}
else
{
end1 = V[2];
}
}
Segment3<Real> seg(end0,end1);
// This could be either an sphere-edge or a sphere-vertex intersection
// (this test isn't enough to differentiate), so use the full-on
// line-sphere test.
IntrSegment3Sphere3<Real> calc(seg, *mSphere);
if (calc.Find(tmax, velocity0, velocity1))
{
mContactTime = calc.GetContactTime();
mPoint = calc.GetPoint(0);
return true;
}
return false;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrTriangle3Sphere3<Real>::FindSphereVertexIntersection (
const Vector3<Real>& vertex, Real tmax,
const Vector3<Real>& velocity0, const Vector3<Real>& velocity1)
{
// Finds the time and place (and possible occurrence it may miss) of an
// intersection between a sphere of fRadius at rkOrigin moving in rkDir
// towards a vertex at vertex.
Vector3<Real> relVelocity = velocity1 - velocity0;
Vector3<Real> D = mSphere->Center - vertex;
Vector3<Real> cross = D.Cross(relVelocity);
Real rSqr = mSphere->Radius*mSphere->Radius;
Real vsqr = relVelocity.SquaredLength();
if (cross.SquaredLength() > rSqr*vsqr)
{
// The ray overshoots the sphere.
return false;
}
// Find the time of intersection.
Real dot = D.Dot(relVelocity);
Real diff = D.SquaredLength() - rSqr;
Real inv = Math<Real>::InvSqrt(Math<Real>::FAbs(dot*dot - vsqr*diff));
mContactTime = diff*inv/((Real)1 - dot*inv);
if (mContactTime > tmax)
{
// The intersection occurs after max time.
return false;
}
// The intersection is a triangle vertex.
mPoint = vertex + mContactTime*velocity0;
return true;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class IntrTriangle3Sphere3<float>;
template WM5_MATHEMATICS_ITEM
class IntrTriangle3Sphere3<double>;
//----------------------------------------------------------------------------
}
|