1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.12.1 (2015/11/21)
// NOTE: This code was written for the upcoming Geometric Tools Engine but
// has been back-ported to Wild Magic 5 to replace its badly implemented
// version.
#include "Wm5MathematicsPCH.h"
#include "Wm5SingularValueDecompositionGTE.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
SingularValueDecompositionGTE<Real>::SingularValueDecompositionGTE(
int numRows, int numCols, unsigned int maxIterations)
:
mNumRows(0),
mNumCols(0),
mMaxIterations(0)
{
if (numCols > 1 && numRows >= numCols && maxIterations > 0)
{
mNumRows = numRows;
mNumCols = numCols;
mMaxIterations = maxIterations;
mMatrix.resize(numRows * numCols);
mDiagonal.resize(numCols);
mSuperdiagonal.resize(numCols - 1);
mRGivens.reserve(maxIterations*(numCols - 1));
mLGivens.reserve(maxIterations*(numCols - 1));
mFixupDiagonal.resize(numCols);
mPermutation.resize(numCols);
mVisited.resize(numCols);
mTwoInvUTU.resize(numCols);
mTwoInvVTV.resize(numCols - 2);
mUVector.resize(numRows);
mVVector.resize(numCols);
mWVector.resize(numRows);
}
}
//----------------------------------------------------------------------------
template <typename Real>
unsigned int SingularValueDecompositionGTE<Real>::Solve(Real const* input,
int sortType)
{
if (mNumRows > 0)
{
int numElements = mNumRows * mNumCols;
std::copy(input, input + numElements, mMatrix.begin());
Bidiagonalize();
// Compute 'threshold = multiplier*epsilon*|B|' as the threshold for
// diagonal entries effectively zero; that is, |d| <= |threshold|
// implies that d is (effectively) zero. TODO: Allow the caller to
// pass 'multiplier' to the constructor.
//
// We will use the L2-norm |B|, which is the length of the elements
// of B treated as an NM-tuple. The following code avoids overflow
// when accumulating the squares of the elements when those elements
// are large.
Real maxAbsComp = std::abs(input[0]);
for (int i = 1; i < numElements; ++i)
{
Real absComp = std::abs(input[i]);
if (absComp > maxAbsComp)
{
maxAbsComp = absComp;
}
}
Real norm = (Real)0;
if (maxAbsComp > (Real)0)
{
Real invMaxAbsComp = ((Real)1) / maxAbsComp;
for (int i = 0; i < numElements; ++i)
{
Real ratio = input[i] * invMaxAbsComp;
norm += ratio * ratio;
}
norm = maxAbsComp*sqrt(norm);
}
Real const multiplier = (Real)8; // TODO: Expose to caller.
Real const epsilon = std::numeric_limits<Real>::epsilon();
Real const threshold = multiplier * epsilon * norm;
mRGivens.clear();
mLGivens.clear();
for (unsigned int j = 0; j < mMaxIterations; ++j)
{
int imin = -1, imax = -1;
for (int i = mNumCols - 2; i >= 0; --i)
{
// When a01 is much smaller than its diagonal neighbors, it is
// effectively zero.
Real a00 = mDiagonal[i];
Real a01 = mSuperdiagonal[i];
Real a11 = mDiagonal[i + 1];
Real sum = std::abs(a00) + std::abs(a11);
if (sum + std::abs(a01) != sum)
{
if (imax == -1)
{
imax = i;
}
imin = i;
}
else
{
// The superdiagonal term is effectively zero compared to
// the neighboring diagonal terms.
if (imin >= 0)
{
break;
}
}
}
if (imax == -1)
{
// The algorithm has converged.
EnsureNonnegativeDiagonal();
ComputePermutation(sortType);
return j;
}
// We need to test diagonal entries of B for zero. For each zero
// diagonal entry, zero the superdiagonal.
if (DiagonalEntriesNonzero(imin, imax, threshold))
{
// Process the lower-right-most unreduced bidiagonal block.
DoGolubKahanStep(imin, imax);
}
}
return 0xFFFFFFFF;
}
else
{
return 0;
}
}
//----------------------------------------------------------------------------
template <typename Real>
void SingularValueDecompositionGTE<Real>::GetSingularValues(
Real* singularValues) const
{
if (singularValues && mNumCols > 0)
{
if (mPermutation[0] >= 0)
{
// Sorting was requested.
for (int i = 0; i < mNumCols; ++i)
{
int p = mPermutation[i];
singularValues[i] = mDiagonal[p];
}
}
else
{
// Sorting was not requested.
memcpy(singularValues, &mDiagonal[0], mNumCols*sizeof(Real));
}
}
}
//----------------------------------------------------------------------------
template <typename Real>
void SingularValueDecompositionGTE<Real>::GetU(Real* uMatrix) const
{
if (!uMatrix || mNumCols == 0)
{
// Invalid input or the constructor failed.
return;
}
// Start with the identity matrix.
std::fill(uMatrix, uMatrix + mNumRows*mNumRows, (Real)0);
for (int d = 0; d < mNumRows; ++d)
{
uMatrix[d + mNumRows*d] = (Real)1;
}
// Multiply the Householder reflections using backward accumulation.
int r, c;
for (int i0 = mNumCols - 1, i1 = i0 + 1; i0 >= 0; --i0, --i1)
{
// Copy the u vector and 2/Dot(u,u) from the matrix.
Real twoinvudu = mTwoInvUTU[i0];
Real const* column = &mMatrix[i0];
mUVector[i0] = (Real)1;
for (r = i1; r < mNumRows; ++r)
{
mUVector[r] = column[mNumCols*r];
}
// Compute the w vector.
mWVector[i0] = twoinvudu;
for (r = i1; r < mNumRows; ++r)
{
mWVector[r] = (Real)0;
for (c = i1; c < mNumRows; ++c)
{
mWVector[r] += mUVector[c] * uMatrix[r + mNumRows*c];
}
mWVector[r] *= twoinvudu;
}
// Update the matrix, U <- U - u*w^T.
for (r = i0; r < mNumRows; ++r)
{
for (c = i0; c < mNumRows; ++c)
{
uMatrix[c + mNumRows*r] -= mUVector[r] * mWVector[c];
}
}
}
// Multiply the Givens rotations.
typename std::vector<GivensRotation>::const_iterator givens
= mLGivens.begin();
for (/**/; givens != mLGivens.end(); ++givens)
{
int j0 = givens->index0;
int j1 = givens->index1;
for (r = 0; r < mNumRows; ++r, j0 += mNumRows, j1 += mNumRows)
{
Real& q0 = uMatrix[j0];
Real& q1 = uMatrix[j1];
Real prd0 = givens->cs * q0 - givens->sn * q1;
Real prd1 = givens->sn * q0 + givens->cs * q1;
q0 = prd0;
q1 = prd1;
}
}
if (mPermutation[0] >= 0)
{
// Sorting was requested.
std::fill(mVisited.begin(), mVisited.end(), 0);
for (c = 0; c < mNumCols; ++c)
{
if (mVisited[c] == 0 && mPermutation[c] != c)
{
// The item starts a cycle with 2 or more elements.
int start = c, current = c, next;
for (r = 0; r < mNumRows; ++r)
{
mWVector[r] = uMatrix[c + mNumRows*r];
}
while ((next = mPermutation[current]) != start)
{
mVisited[current] = 1;
for (r = 0; r < mNumRows; ++r)
{
uMatrix[current + mNumRows*r] =
uMatrix[next + mNumRows*r];
}
current = next;
}
mVisited[current] = 1;
for (r = 0; r < mNumRows; ++r)
{
uMatrix[current + mNumRows*r] = mWVector[r];
}
}
}
}
}
//----------------------------------------------------------------------------
template <typename Real>
void SingularValueDecompositionGTE<Real>::GetV(Real* vMatrix) const
{
if (!vMatrix || mNumCols == 0)
{
// Invalid input or the constructor failed.
return;
}
// Start with the identity matrix.
std::fill(vMatrix, vMatrix + mNumCols*mNumCols, (Real)0);
for (int d = 0; d < mNumCols; ++d)
{
vMatrix[d + mNumCols*d] = (Real)1;
}
// Multiply the Householder reflections using backward accumulation.
int i0 = mNumCols - 3;
int i1 = i0 + 1;
int i2 = i0 + 2;
int r, c;
for (/**/; i0 >= 0; --i0, --i1, --i2)
{
// Copy the v vector and 2/Dot(v,v) from the matrix.
Real twoinvvdv = mTwoInvVTV[i0];
Real const* row = &mMatrix[mNumCols*i0];
mVVector[i1] = (Real)1;
for (r = i2; r < mNumCols; ++r)
{
mVVector[r] = row[r];
}
// Compute the w vector.
mWVector[i1] = twoinvvdv;
for (r = i2; r < mNumCols; ++r)
{
mWVector[r] = (Real)0;
for (c = i2; c < mNumCols; ++c)
{
mWVector[r] += mVVector[c] * vMatrix[r + mNumCols*c];
}
mWVector[r] *= twoinvvdv;
}
// Update the matrix, V <- V - v*w^T.
for (r = i1; r < mNumCols; ++r)
{
for (c = i1; c < mNumCols; ++c)
{
vMatrix[c + mNumCols*r] -= mVVector[r] * mWVector[c];
}
}
}
// Multiply the Givens rotations.
typename std::vector<GivensRotation>::const_iterator givens
= mRGivens.begin();
for (/**/; givens != mRGivens.end(); ++givens)
{
int j0 = givens->index0;
int j1 = givens->index1;
for (c = 0; c < mNumCols; ++c, j0 += mNumCols, j1 += mNumCols)
{
Real& q0 = vMatrix[j0];
Real& q1 = vMatrix[j1];
Real prd0 = givens->cs * q0 - givens->sn * q1;
Real prd1 = givens->sn * q0 + givens->cs * q1;
q0 = prd0;
q1 = prd1;
}
}
// Fix-up the diagonal.
for (r = 0; r < mNumCols; ++r)
{
for (c = 0; c < mNumCols; ++c)
{
vMatrix[c + mNumCols*r] *= mFixupDiagonal[c];
}
}
if (mPermutation[0] >= 0)
{
// Sorting was requested.
std::fill(mVisited.begin(), mVisited.end(), 0);
for (c = 0; c < mNumCols; ++c)
{
if (mVisited[c] == 0 && mPermutation[c] != c)
{
// The item starts a cycle with 2 or more elements.
int start = c, current = c, next;
for (r = 0; r < mNumCols; ++r)
{
mWVector[r] = vMatrix[c + mNumCols*r];
}
while ((next = mPermutation[current]) != start)
{
mVisited[current] = 1;
for (r = 0; r < mNumCols; ++r)
{
vMatrix[current + mNumCols*r] =
vMatrix[next + mNumCols*r];
}
current = next;
}
mVisited[current] = 1;
for (r = 0; r < mNumCols; ++r)
{
vMatrix[current + mNumCols*r] = mWVector[r];
}
}
}
}
}
//----------------------------------------------------------------------------
template <typename Real>
void SingularValueDecompositionGTE<Real>::Bidiagonalize()
{
int r, c;
for (int i = 0, ip1 = 1; i < mNumCols; ++i, ++ip1)
{
// Compute the U-Householder vector.
Real length = (Real)0;
for (r = i; r < mNumRows; ++r)
{
Real ur = mMatrix[i + mNumCols*r];
mUVector[r] = ur;
length += ur * ur;
}
Real udu = (Real)1;
length = sqrt(length);
if (length >(Real)0)
{
Real& u1 = mUVector[i];
Real sgn = (u1 >= (Real)0 ? (Real)1 : (Real)-1);
Real invDenom = ((Real)1) / (u1 + sgn * length);
u1 = (Real)1;
for (r = ip1; r < mNumRows; ++r)
{
Real& ur = mUVector[r];
ur *= invDenom;
udu += ur * ur;
}
}
// Compute the rank-1 offset u*w^T.
Real invudu = (Real)1 / udu;
Real twoinvudu = invudu * (Real)2;
for (c = i; c < mNumCols; ++c)
{
mWVector[c] = (Real)0;
for (r = i; r < mNumRows; ++r)
{
mWVector[c] += mMatrix[c + mNumCols*r] * mUVector[r];
}
mWVector[c] *= twoinvudu;
}
// Update the input matrix.
for (r = i; r < mNumRows; ++r)
{
for (c = i; c < mNumCols; ++c)
{
mMatrix[c + mNumCols*r] -= mUVector[r] * mWVector[c];
}
}
if (i < mNumCols - 2)
{
// Compute the V-Householder vectors.
length = (Real)0;
for (c = ip1; c < mNumCols; ++c)
{
Real vc = mMatrix[c + mNumCols*i];
mVVector[c] = vc;
length += vc * vc;
}
Real vdv = (Real)1;
length = sqrt(length);
if (length >(Real)0)
{
Real& v1 = mVVector[ip1];
Real sgn = (v1 >= (Real)0 ? (Real)1 : (Real)-1);
Real invDenom = ((Real)1) / (v1 + sgn * length);
v1 = (Real)1;
for (c = ip1 + 1; c < mNumCols; ++c)
{
Real& vc = mVVector[c];
vc *= invDenom;
vdv += vc * vc;
}
}
// Compute the rank-1 offset w*v^T.
Real invvdv = (Real)1 / vdv;
Real twoinvvdv = invvdv * (Real)2;
for (r = i; r < mNumRows; ++r)
{
mWVector[r] = (Real)0;
for (c = ip1; c < mNumCols; ++c)
{
mWVector[r] += mMatrix[c + mNumCols*r] * mVVector[c];
}
mWVector[r] *= twoinvvdv;
}
// Update the input matrix.
for (r = i; r < mNumRows; ++r)
{
for (c = ip1; c < mNumCols; ++c)
{
mMatrix[c + mNumCols*r] -= mWVector[r] * mVVector[c];
}
}
mTwoInvVTV[i] = twoinvvdv;
for (c = i + 2; c < mNumCols; ++c)
{
mMatrix[c + mNumCols*i] = mVVector[c];
}
}
mTwoInvUTU[i] = twoinvudu;
for (r = ip1; r < mNumRows; ++r)
{
mMatrix[i + mNumCols*r] = mUVector[r];
}
}
// Copy the diagonal and subdiagonal for cache coherence in the
// Golub-Kahan iterations.
int k, ksup = mNumCols - 1, index = 0, delta = mNumCols + 1;
for (k = 0; k < ksup; ++k, index += delta)
{
mDiagonal[k] = mMatrix[index];
mSuperdiagonal[k] = mMatrix[index + 1];
}
mDiagonal[k] = mMatrix[index];
}
//----------------------------------------------------------------------------
template <typename Real>
void SingularValueDecompositionGTE<Real>::GetSinCos(Real x, Real y, Real& cs,
Real& sn)
{
// Solves sn*x + cs*y = 0 robustly.
Real tau;
if (y != (Real)0)
{
if (std::abs(y) > std::abs(x))
{
tau = -x / y;
sn = ((Real)1) / sqrt(((Real)1) + tau*tau);
cs = sn * tau;
}
else
{
tau = -y / x;
cs = ((Real)1) / sqrt(((Real)1) + tau*tau);
sn = cs * tau;
}
}
else
{
cs = (Real)1;
sn = (Real)0;
}
}
//----------------------------------------------------------------------------
template <typename Real>
bool SingularValueDecompositionGTE<Real>::DiagonalEntriesNonzero(int imin,
int imax, Real threshold)
{
for (int i = imin; i <= imax; ++i)
{
if (std::abs(mDiagonal[i]) <= threshold)
{
// Use planar rotations to case the superdiagonal entry out of
// the matrix, thus producing a row of zeros.
Real x, z, cs, sn;
Real y = mSuperdiagonal[i];
mSuperdiagonal[i] = (Real)0;
for (int j = i + 1; j <= imax + 1; ++j)
{
x = mDiagonal[j];
GetSinCos(x, y, cs, sn);
mLGivens.push_back(GivensRotation(i, j, cs, sn));
mDiagonal[j] = cs*x - sn*y;
if (j <= imax)
{
z = mSuperdiagonal[j];
mSuperdiagonal[j] = cs*z;
y = sn*z;
}
}
return false;
}
}
return true;
}
//----------------------------------------------------------------------------
template <typename Real>
void SingularValueDecompositionGTE<Real>::DoGolubKahanStep(int imin, int imax)
{
// The implicit shift. Compute the eigenvalue u of the lower-right 2x2
// block of A = B^T*B that is closer to b11.
Real f0 = (imax >= (Real)1 ? mSuperdiagonal[imax - 1] : (Real)0);
Real d1 = mDiagonal[imax];
Real f1 = mSuperdiagonal[imax];
Real d2 = mDiagonal[imax + 1];
Real a00 = d1*d1 + f0*f0;
Real a01 = d1*f1;
Real a11 = d2*d2 + f1*f1;
Real dif = (a00 - a11) * (Real)0.5;
Real sgn = (dif >= (Real)0 ? (Real)1 : (Real)-1);
Real a01sqr = a01 * a01;
Real u = a11 - a01sqr / (dif + sgn*sqrt(dif*dif + a01sqr));
Real x = mDiagonal[imin] * mDiagonal[imin] - u;
Real y = mDiagonal[imin] * mSuperdiagonal[imin];
Real a12, a21, a22, a23, cs, sn;
Real a02 = (Real)0;
int i0 = imin - 1, i1 = imin, i2 = imin + 1;
for (/**/; i1 <= imax; ++i0, ++i1, ++i2)
{
// Compute the Givens rotation G and save it for use in computing
// V in U^T*A*V = S.
GetSinCos(x, y, cs, sn);
mRGivens.push_back(GivensRotation(i1, i2, cs, sn));
// Update B0 = B*G.
if (i1 > imin)
{
mSuperdiagonal[i0] = cs*mSuperdiagonal[i0] - sn*a02;
}
a11 = mDiagonal[i1];
a12 = mSuperdiagonal[i1];
a22 = mDiagonal[i2];
mDiagonal[i1] = cs*a11 - sn*a12;
mSuperdiagonal[i1] = sn*a11 + cs*a12;
mDiagonal[i2] = cs*a22;
a21 = -sn*a22;
// Update the parameters for the next Givens rotations.
x = mDiagonal[i1];
y = a21;
// Compute the Givens rotation G and save it for use in computing
// U in U^T*A*V = S.
GetSinCos(x, y, cs, sn);
mLGivens.push_back(GivensRotation(i1, i2, cs, sn));
// Update B1 = G^T*B0.
a11 = mDiagonal[i1];
a12 = mSuperdiagonal[i1];
a22 = mDiagonal[i2];
mDiagonal[i1] = cs*a11 - sn*a21;
mSuperdiagonal[i1] = cs*a12 - sn*a22;
mDiagonal[i2] = sn*a12 + cs*a22;
if (i1 < imax)
{
a23 = mSuperdiagonal[i2];
a02 = -sn*a23;
mSuperdiagonal[i2] = cs*a23;
// Update the parameters for the next Givens rotations.
x = mSuperdiagonal[i1];
y = a02;
}
}
}
//----------------------------------------------------------------------------
template <typename Real>
void SingularValueDecompositionGTE<Real>::EnsureNonnegativeDiagonal()
{
for (int i = 0; i < mNumCols; ++i)
{
if (mDiagonal[i] >= (Real)0)
{
mFixupDiagonal[i] = (Real)1;
}
else
{
mDiagonal[i] = -mDiagonal[i];
mFixupDiagonal[i] = (Real)-1;
}
}
}
//----------------------------------------------------------------------------
template <typename Real>
void SingularValueDecompositionGTE<Real>::ComputePermutation(int sortType)
{
if (sortType == 0)
{
// Set a flag for GetSingularValues() and GetOrthogonalMatrices() to
// know that sorted output was not requested.
mPermutation[0] = -1;
return;
}
// Compute the permutation induced by sorting. Initially, we start with
// the identity permutation I = (0,1,...,N-1).
std::vector<SortItem> items(mNumCols);
int i;
for (i = 0; i < mNumCols; ++i)
{
items[i].singularValue = mDiagonal[i];
items[i].index = i;
}
if (sortType > 0)
{
std::sort(items.begin(), items.end(), std::less<SortItem>());
}
else
{
std::sort(items.begin(), items.end(), std::greater<SortItem>());
}
typename std::vector<SortItem>::const_iterator item = items.begin();
for (i = 0; item != items.end(); ++item, ++i)
{
mPermutation[i] = item->index;
}
// GetOrthogonalMatrices() has nontrivial code for computing the
// orthogonal U and V from the reflections and rotations. To avoid
// complicating the code further when sorting is requested, U and V are
// computed as in the unsorted case. We then need to swap columns of
// U and V to be consistent with the sorting of the singular values. To
// minimize copying due to column swaps, we use permutation P. The
// minimum number of transpositions to obtain P from I is N minus the
// number of cycles of P. Each cycle is reordered with a minimum number
// of transpositions; that is, the singular items are cyclically swapped,
// leading to a minimum amount of copying. For example, if there is a
// cycle i0 -> i1 -> i2 -> i3, then the copying is
// save = singularitem[i0];
// singularitem[i1] = singularitem[i2];
// singularitem[i2] = singularitem[i3];
// singularitem[i3] = save;
}
//----------------------------------------------------------------------------
template <typename Real>
SingularValueDecompositionGTE<Real>::GivensRotation::GivensRotation()
{
// No default initialization for fast creation of std::vector of objects
// of this type.
}
//----------------------------------------------------------------------------
template <typename Real>
SingularValueDecompositionGTE<Real>::GivensRotation::GivensRotation(
int inIndex0, int inIndex1, Real inCs, Real inSn)
:
index0(inIndex0),
index1(inIndex1),
cs(inCs),
sn(inSn)
{
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class SingularValueDecompositionGTE<float>;
template WM5_MATHEMATICS_ITEM
class SingularValueDecompositionGTE<double>;
//----------------------------------------------------------------------------
}
|