1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5PhysicsPCH.h"
#include "Wm5RectangleManager.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
RectangleManager<Real>::RectangleManager (
std::vector<AxisAlignedBox2<Real> >& rectangles)
:
mRectangles(&rectangles)
{
Initialize();
}
//----------------------------------------------------------------------------
template <typename Real>
RectangleManager<Real>::~RectangleManager ()
{
}
//----------------------------------------------------------------------------
template <typename Real>
void RectangleManager<Real>::Initialize ()
{
// Get the rectangle endpoints.
int intrSize = (int)mRectangles->size(), endpSize = 2*intrSize;
mXEndpoints.resize(endpSize);
mYEndpoints.resize(endpSize);
int i, j;
for (i = 0, j = 0; i < intrSize; ++i)
{
mXEndpoints[j].Type = 0;
mXEndpoints[j].Value = (*mRectangles)[i].Min[0];
mXEndpoints[j].Index = i;
mYEndpoints[j].Type = 0;
mYEndpoints[j].Value = (*mRectangles)[i].Min[1];
mYEndpoints[j].Index = i;
j++;
mXEndpoints[j].Type = 1;
mXEndpoints[j].Value = (*mRectangles)[i].Max[0];
mXEndpoints[j].Index = i;
mYEndpoints[j].Type = 1;
mYEndpoints[j].Value = (*mRectangles)[i].Max[1];
mYEndpoints[j].Index = i;
j++;
}
// Sort the rectangle endpoints.
std::sort(mXEndpoints.begin(), mXEndpoints.end());
std::sort(mYEndpoints.begin(), mYEndpoints.end());
// Create the interval-to-endpoint lookup tables.
mXLookup.resize(endpSize);
mYLookup.resize(endpSize);
for (j = 0; j < endpSize; ++j)
{
mXLookup[2*mXEndpoints[j].Index + mXEndpoints[j].Type] = j;
mYLookup[2*mYEndpoints[j].Index + mYEndpoints[j].Type] = j;
}
// Active set of rectangles (stored by index in array).
std::set<int> active;
// Set of overlapping rectangles (stored by pairs of indices in array).
mOverlap.clear();
// Sweep through the endpoints to determine overlapping x-intervals.
for (i = 0; i < endpSize; ++i)
{
Endpoint& endpoint = mXEndpoints[i];
int index = endpoint.Index;
if (endpoint.Type == 0) // an interval 'begin' value
{
// In the 1D problem, the current interval overlaps with all the
// active intervals. In 2D this we also need to check for
// y-overlap.
std::set<int>::iterator iter = active.begin();
std::set<int>::iterator end = active.end();
for (/**/; iter != end; ++iter)
{
// Rectangles activeIndex and index overlap in the
// x-dimension. Test for overlap in the y-dimension.
int activeIndex = *iter;
const AxisAlignedBox2<Real>& r0 = (*mRectangles)[activeIndex];
const AxisAlignedBox2<Real>& r1 = (*mRectangles)[index];
if (r0.HasYOverlap(r1))
{
if (activeIndex < index)
{
mOverlap.insert(EdgeKey(activeIndex, index));
}
else
{
mOverlap.insert(EdgeKey(index, activeIndex));
}
}
}
active.insert(index);
}
else // an interval 'end' value
{
active.erase(index);
}
}
}
//----------------------------------------------------------------------------
template <typename Real>
void RectangleManager<Real>::SetRectangle (int i,
const AxisAlignedBox2<Real>& rectangle)
{
assertion(0 <= i && i < (int)mRectangles->size(), "Invalid index\n");
(*mRectangles)[i] = rectangle;
mXEndpoints[mXLookup[2*i]].Value = rectangle.Min[0];
mXEndpoints[mXLookup[2*i+1]].Value = rectangle.Max[0];
mYEndpoints[mYLookup[2*i]].Value = rectangle.Min[1];
mYEndpoints[mYLookup[2*i+1]].Value = rectangle.Max[1];
}
//----------------------------------------------------------------------------
template <typename Real>
void RectangleManager<Real>::GetRectangle (int i,
AxisAlignedBox2<Real>& rectangle) const
{
assertion(0 <= i && i < (int)mRectangles->size(), "Invalid index\n");
rectangle = (*mRectangles)[i];
}
//----------------------------------------------------------------------------
template <typename Real>
void RectangleManager<Real>::InsertionSort (
std::vector<Endpoint>& endpoint, std::vector<int>& lookup)
{
// Apply an insertion sort. Under the assumption that the rectangles
// have not changed much since the last call, the endpoints are nearly
// sorted. The insertion sort should be very fast in this case.
int endpSize = (int)endpoint.size();
for (int j = 1; j < endpSize; ++j)
{
Endpoint key = endpoint[j];
int i = j - 1;
while (i >= 0 && key < endpoint[i])
{
Endpoint e0 = endpoint[i];
Endpoint e1 = endpoint[i+1];
// Update the overlap status.
if (e0.Type == 0)
{
if (e1.Type == 1)
{
// The 'b' of interval E0.mIndex was smaller than the 'e'
// of interval E1.mIndex, and the intervals *might have
// been* overlapping. Now 'b' and 'e' are swapped, and
// the intervals cannot overlap. Remove the pair from
// the overlap set. The removal operation needs to find
// the pair and erase it if it exists. Finding the pair
// is the expensive part of the operation, so there is no
// real time savings in testing for existence first, then
// deleting if it does.
mOverlap.erase(EdgeKey(e0.Index, e1.Index));
}
}
else
{
if (e1.Type == 0)
{
// The 'b' of interval E1.index was larger than the 'e'
// of interval E0.index, and the intervals were not
// overlapping. Now 'b' and 'e' are swapped, and the
// intervals *might be* overlapping. Determine if they
// are overlapping and then insert.
const AxisAlignedBox2<Real>& r0 =
(*mRectangles)[e0.Index];
const AxisAlignedBox2<Real>& r1 =
(*mRectangles)[e1.Index];
if (r0.TestIntersection(r1))
{
mOverlap.insert(EdgeKey(e0.Index, e1.Index));
}
}
}
// Reorder the items to maintain the sorted list.
endpoint[i] = e1;
endpoint[i+1] = e0;
lookup[2*e1.Index + e1.Type] = i;
lookup[2*e0.Index + e0.Type] = i+1;
i--;
}
endpoint[i+1] = key;
lookup[2*key.Index + key.Type] = i+1;
}
}
//----------------------------------------------------------------------------
template <typename Real>
void RectangleManager<Real>::Update ()
{
InsertionSort(mXEndpoints, mXLookup);
InsertionSort(mYEndpoints, mYLookup);
}
//----------------------------------------------------------------------------
template <typename Real>
const std::set<EdgeKey>& RectangleManager<Real>::GetOverlap () const
{
return mOverlap;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// RectangleManager::Endpoint
//----------------------------------------------------------------------------
template <typename Real>
bool RectangleManager<Real>::Endpoint::operator< (const Endpoint& endpoint)
const
{
if (Value < endpoint.Value)
{
return true;
}
if (Value > endpoint.Value)
{
return false;
}
return Type < endpoint.Type;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_PHYSICS_ITEM
class RectangleManager<float>;
template WM5_PHYSICS_ITEM
class RectangleManager<double>;
//----------------------------------------------------------------------------
}
|