1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
|
samplerCUBE CubeMapSampler = sampler_state
{
MinFilter = Nearest;
MagFilter = Linear;
WrapS = Clamp;
WrapT = Clamp;
};
void v_CubeMap
(
in float3 modelPosition : POSITION,
in float3 modelNormal : NORMAL,
in float3 modelColor : COLOR,
out float4 clipPosition : POSITION,
out float4 vertexColor : COLOR,
out float3 cubeTCoord : TEXCOORD0,
uniform float4x4 PVWMatrix,
uniform float4x4 WMatrix,
uniform float3 CameraWorldPosition
)
{
// Transform the position from model space to clip space.
float4 hModelPosition = float4(modelPosition, 1.0f);
clipPosition = mul(PVWMatrix, hModelPosition);
// Transform the position from model space to world space.
float3 worldPosition = mul(WMatrix, hModelPosition).xyz;
// Transform the normal from model space to world space.
float4 hModelNormal = float4(modelNormal, 0.0f);
float3 worldNormal = normalize(mul(WMatrix, hModelNormal)).xyz;
// Calculate the eye direction. The direction does not have to be
// normalized, because the texture coordinates for the cube map are
// invariant to scaling. Thus, directions V and s*V for s > 0
// generate the same texture coordinates.
float3 eyeDirection = worldPosition - CameraWorldPosition;
// Calculate the reflected vector.
cubeTCoord = reflect(eyeDirection, worldNormal);
// Pass through the model color.
vertexColor.rgb = modelColor;
vertexColor.a = 1.0f;
}
void p_CubeMap
(
in float4 vertexColor : COLOR,
in float3 cubeTCoord : TEXCOORD0,
out float4 pixelColor : COLOR,
uniform float Reflectivity
)
{
float4 reflectedColor = texCUBE(CubeMapSampler, cubeTCoord);
pixelColor = lerp(vertexColor, reflectedColor, Reflectivity);
}
|