1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.0 (2010/01/01)
#include "ExtractRidges.h"
WM5_CONSOLE_APPLICATION(ExtractRidges);
//----------------------------------------------------------------------------
ExtractRidges::ExtractRidges ()
:
ConsoleApplication("SampleImagics/ExtractRidges")
{
}
//----------------------------------------------------------------------------
int ExtractRidges::Main (int, char**)
{
std::string imageName = Environment::GetPathR("Head.im");
ImageDouble2D image(imageName.c_str());
// Normalize the image values to be in [0,1].
int quantity = image.GetQuantity();
double minValue = image[0], maxValue = minValue;
int i;
for (i = 1; i < quantity; ++i)
{
if (image[i] < minValue)
{
minValue = image[i];
}
else if (image[i] > maxValue)
{
maxValue = image[i];
}
}
double invRange = 1.0/(maxValue - minValue);
for (i = 0; i < quantity; ++i)
{
image[i] = (image[i] - minValue)*invRange;
}
// Use first-order centered finite differences to estimate the image
// derivatives. The gradient is DF = (df/dx, df/dy) and the Hessian
// is D^2F = {{d^2f/dx^2, d^2f/dxdy}, {d^2f/dydx, d^2f/dy^2}}.
int xBound = image.GetBound(0);
int yBound = image.GetBound(1);
int xBoundM1 = xBound - 1;
int yBoundM1 = yBound - 1;
ImageDouble2D dx(xBound, yBound);
ImageDouble2D dy(xBound, yBound);
ImageDouble2D dxx(xBound, yBound);
ImageDouble2D dxy(xBound, yBound);
ImageDouble2D dyy(xBound, yBound);
int x, y;
for (y = 1; y < yBoundM1; ++y)
{
for (x = 1; x < xBoundM1; ++x)
{
dx(x, y) = 0.5*(image(x+1, y) - image(x-1, y));
dy(x, y) = 0.5*(image(x, y+1) - image(x, y-1));
dxx(x, y) = image(x+1, y) - 2.0*image(x, y) + image(x-1, y);
dxy(x, y) = 0.25*(image(x+1, y+1) + image(x-1, y-1)
- image(x+1, y-1) - image(x-1, y+1));
dyy(x, y) = image(x, y+1) - 2.0*image(x, y) + image(x, y+1);
}
}
dx.Save("dx.im");
dy.Save("dy.im");
dxx.Save("dxx.im");
dxy.Save("dxy.im");
dyy.Save("dyy.im");
// The eigensolver produces eigenvalues a and b and corresponding
// eigenvectors U and V: D^2F*U = a*U, D^2F*V = b*V. Define
// P = Dot(U,DF) and Q = Dot(V,DF). The classification is as follows.
// ridge: P = 0 with a < 0
// valley: Q = 0 with b > 0
ImageDouble2D aImage(xBound, yBound);
ImageDouble2D bImage(xBound, yBound);
ImageDouble2D pImage(xBound, yBound);
ImageDouble2D qImage(xBound, yBound);
for (y = 1; y < yBoundM1; ++y)
{
for (x = 1; x < xBoundM1; ++x)
{
Vector2d gradient(dx(x, y), dy(x, y));
Matrix2d hessian(dxx(x, y), dxy(x, y), dxy(x, y), dyy(x, y));
EigenDecompositiond decomposer(hessian);
decomposer.Solve(true);
aImage(x,y) = decomposer.GetEigenvalue(0);
bImage(x,y) = decomposer.GetEigenvalue(1);
Vector2d u = decomposer.GetEigenvector2(0);
Vector2d v = decomposer.GetEigenvector2(1);
pImage(x,y) = u.Dot(gradient);
qImage(x,y) = v.Dot(gradient);
}
}
aImage.Save("a.im");
bImage.Save("b.im");
pImage.Save("p.im");
qImage.Save("q.im");
// Use a cheap classification of the pixels by testing for sign changes
// between neighboring pixels.
ImageRGB82D result(xBound, yBound);
for (y = 1; y < yBoundM1; ++y)
{
for (x = 1; x < xBoundM1; ++x)
{
unsigned char gray = (unsigned char)(255.0f*image(x, y));
double pValue = pImage(x, y);
bool isRidge = false;
if (pValue*pImage(x-1 ,y) < 0.0
|| pValue*pImage(x+1, y) < 0.0
|| pValue*pImage(x, y-1) < 0.0
|| pValue*pImage(x, y+1) < 0.0)
{
if (aImage(x, y) < 0.0)
{
isRidge = true;
}
}
double qValue = qImage(x,y);
bool isValley = false;
if (qValue*qImage(x-1, y) < 0.0
|| qValue*qImage(x+1, y) < 0.0
|| qValue*qImage(x, y-1) < 0.0
|| qValue*qImage(x, y+1) < 0.0)
{
if (bImage(x,y) > 0.0)
{
isValley = true;
}
}
if (isRidge)
{
if (isValley)
{
result(x, y) = GetColor24(gray, 0, gray);
}
else
{
result(x, y) = GetColor24(gray, 0, 0);
}
}
else if (isValley)
{
result(x, y) = GetColor24(0, 0, gray);
}
else
{
result(x, y) = GetColor24(gray, gray, gray);
}
}
}
result.Save("result.im");
return 0;
}
//----------------------------------------------------------------------------
|