File: ExtractRidges.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 90,124 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 40
file content (167 lines) | stat: -rw-r--r-- 5,517 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.0 (2010/01/01)

#include "ExtractRidges.h"

WM5_CONSOLE_APPLICATION(ExtractRidges);

//----------------------------------------------------------------------------
ExtractRidges::ExtractRidges ()
    :
    ConsoleApplication("SampleImagics/ExtractRidges")
{
}
//----------------------------------------------------------------------------
int ExtractRidges::Main (int, char**)
{
    std::string imageName = Environment::GetPathR("Head.im");
    ImageDouble2D image(imageName.c_str());

    // Normalize the image values to be in [0,1].
    int quantity = image.GetQuantity();
    double minValue = image[0], maxValue = minValue;
    int i;
    for (i = 1; i < quantity; ++i)
    {
        if (image[i] < minValue)
        {
            minValue = image[i];
        }
        else if (image[i] > maxValue)
        {
            maxValue = image[i];
        }
    }
    double invRange = 1.0/(maxValue - minValue);
    for (i = 0; i < quantity; ++i)
    {
        image[i] = (image[i] - minValue)*invRange;
    }

    // Use first-order centered finite differences to estimate the image
    // derivatives.  The gradient is DF = (df/dx, df/dy) and the Hessian
    // is D^2F = {{d^2f/dx^2, d^2f/dxdy}, {d^2f/dydx, d^2f/dy^2}}.
    int xBound = image.GetBound(0);
    int yBound = image.GetBound(1);
    int xBoundM1 = xBound - 1;
    int yBoundM1 = yBound - 1;
    ImageDouble2D dx(xBound, yBound);
    ImageDouble2D dy(xBound, yBound);
    ImageDouble2D dxx(xBound, yBound);
    ImageDouble2D dxy(xBound, yBound);
    ImageDouble2D dyy(xBound, yBound);
    int x, y;
    for (y = 1; y < yBoundM1; ++y)
    {
        for (x = 1; x < xBoundM1; ++x)
        {
            dx(x, y) = 0.5*(image(x+1, y) - image(x-1, y));
            dy(x, y) = 0.5*(image(x, y+1) - image(x, y-1));
            dxx(x, y) = image(x+1, y) - 2.0*image(x, y) + image(x-1, y);
            dxy(x, y) = 0.25*(image(x+1, y+1) + image(x-1, y-1)
                - image(x+1, y-1) - image(x-1, y+1));
            dyy(x, y) = image(x, y+1) - 2.0*image(x, y) + image(x, y+1);
        }
    }
    dx.Save("dx.im");
    dy.Save("dy.im");
    dxx.Save("dxx.im");
    dxy.Save("dxy.im");
    dyy.Save("dyy.im");

    // The eigensolver produces eigenvalues a and b and corresponding
    // eigenvectors U and V:  D^2F*U = a*U, D^2F*V = b*V.  Define
    // P = Dot(U,DF) and Q = Dot(V,DF).  The classification is as follows.
    //   ridge:   P = 0 with a < 0
    //   valley:  Q = 0 with b > 0
    ImageDouble2D aImage(xBound, yBound);
    ImageDouble2D bImage(xBound, yBound);
    ImageDouble2D pImage(xBound, yBound);
    ImageDouble2D qImage(xBound, yBound);
    for (y = 1; y < yBoundM1; ++y)
    {
        for (x = 1; x < xBoundM1; ++x)
        {
            Vector2d gradient(dx(x, y), dy(x, y));
            Matrix2d hessian(dxx(x, y), dxy(x, y), dxy(x, y), dyy(x, y));
            EigenDecompositiond decomposer(hessian);
            decomposer.Solve(true);
            aImage(x,y) = decomposer.GetEigenvalue(0);
            bImage(x,y) = decomposer.GetEigenvalue(1);
            Vector2d u = decomposer.GetEigenvector2(0);
            Vector2d v = decomposer.GetEigenvector2(1);
            pImage(x,y) = u.Dot(gradient);
            qImage(x,y) = v.Dot(gradient);
        }
    }
    aImage.Save("a.im");
    bImage.Save("b.im");
    pImage.Save("p.im");
    qImage.Save("q.im");

    // Use a cheap classification of the pixels by testing for sign changes
    // between neighboring pixels.
    ImageRGB82D result(xBound, yBound);
    for (y = 1; y < yBoundM1; ++y)
    {
        for (x = 1; x < xBoundM1; ++x)
        {
            unsigned char gray = (unsigned char)(255.0f*image(x, y));

            double pValue = pImage(x, y);
            bool isRidge = false;
            if (pValue*pImage(x-1 ,y) < 0.0
            ||  pValue*pImage(x+1, y) < 0.0
            ||  pValue*pImage(x, y-1) < 0.0
            ||  pValue*pImage(x, y+1) < 0.0)
            {
                if (aImage(x, y) < 0.0)
                {
                    isRidge = true;
                }
            }

            double qValue = qImage(x,y);
            bool isValley = false;
            if (qValue*qImage(x-1, y) < 0.0
            ||  qValue*qImage(x+1, y) < 0.0
            ||  qValue*qImage(x, y-1) < 0.0
            ||  qValue*qImage(x, y+1) < 0.0)
            {
                if (bImage(x,y) > 0.0)
                {
                    isValley = true;
                }
            }

            if (isRidge)
            {
                if (isValley)
                {
                    result(x, y) = GetColor24(gray, 0, gray);
                }
                else
                {
                    result(x, y) = GetColor24(gray, 0, 0);
                }
            }
            else if (isValley)
            {
                result(x, y) = GetColor24(0, 0, gray);
            }
            else
            {
                result(x, y) = GetColor24(gray, gray, gray);
            }
        }
    }
    result.Save("result.im");

    return 0;
}
//----------------------------------------------------------------------------