1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.0 (2010/01/01)
#include "CreateEnvelope.h"
#include "Endpoint.h"
#include "SegmentGraph.h"
#include "Wm5Memory.h"
const RScalar CreateEnvelope::ZERO(0);
const RScalar CreateEnvelope::ONE(1);
//----------------------------------------------------------------------------
CreateEnvelope::CreateEnvelope (int numVertices, const Vector2f* vertices,
int numIndices, const int* indices, int& numEnvelopeVertices,
Vector2f*& envelopeVertices)
{
// The graph of vertices and edgeMaps to be used for constructing the
// obstacle envelope.
SegmentGraph* graph = new0 SegmentGraph();
// Convert the vertices to rational points to allow exact arithmetic,
// thereby avoiding problems with numerical round-off errors.
RPoint2* ratVertices = new1<RPoint2>(numVertices);
int i;
for (i = 0; i < numVertices; ++i)
{
ratVertices[i].X() = RScalar(vertices[i].X());
ratVertices[i].Y() = RScalar(vertices[i].Y());
}
// Insert the 2D mesh edgeMaps into the graph.
const int* currentIndex = indices;
int numTriangles = numIndices/3;
for (i = 0; i < numTriangles; ++i)
{
int v0 = *currentIndex++;
int v1 = *currentIndex++;
int v2 = *currentIndex++;
graph->InsertEdge(ratVertices[v0], ratVertices[v1]);
graph->InsertEdge(ratVertices[v1], ratVertices[v2]);
graph->InsertEdge(ratVertices[v2], ratVertices[v0]);
}
delete1(ratVertices);
// Represent each edge as a map of points ordered by rational parameter
// values, each point P(t) = End0 + t*(End1-End0), where End0 and End1
// are the rational endpoints of the edge and t is the rational
// parameter for the edge point P(t).
std::set<SegmentGraph::Edge>& edgeSet = graph->GetEdges();
int numEdges = (int)edgeSet.size();
EdgeMap** edgeMaps = new1<EdgeMap*>(numEdges);
std::set<SegmentGraph::Edge>::iterator esIter = edgeSet.begin();
for (i = 0; i < numEdges; ++i, ++esIter)
{
SegmentGraph::Edge edge = *esIter;
EdgeMap* edgeMap = new0 EdgeMap();
(*edgeMap)[0] = edge.GetVertex(0)->Position;
(*edgeMap)[1] = edge.GetVertex(1)->Position;
edgeMaps[i] = edgeMap;
}
UpdateAllEdges(numEdges, edgeMaps);
// Recreate the graph, now using the segmented edgeMaps from the original
// graph.
delete0(graph);
graph = new0 SegmentGraph();
for (i = 0; i < numEdges; ++i)
{
// Each graph edge is a pair of consecutive edge points.
EdgeMap* edgeMap = edgeMaps[i];
// Get first point.
EdgeMap::iterator iter = edgeMap->begin();
EdgeMap::iterator end = edgeMap->end();
RPoint2* point0 = &iter->second;
// Get remaining points.
for (++iter; iter != end; ++iter)
{
RPoint2* point1 = &iter->second;
graph->InsertEdge(*point0, *point1);
point0 = point1;
}
delete0(edgeMap);
}
delete1(edgeMaps);
std::vector<RPoint2> envelope;
graph->ExtractEnvelope(envelope);
// Convert the vertices back to floating-point values and return to the
// caller.
numEnvelopeVertices = (int)envelope.size();
envelopeVertices = new1<Vector2f>(numEnvelopeVertices);
for (i = 0; i < numEnvelopeVertices; ++i)
{
const RPoint2& point = envelope[i];
point.X().ConvertTo(envelopeVertices[i].X());
point.Y().ConvertTo(envelopeVertices[i].Y());
}
delete0(graph);
}
//----------------------------------------------------------------------------
void CreateEnvelope::InsertParameter (EdgeMap& edgeMap, const RScalar& t)
{
if (ZERO < t && t < ONE)
{
const RPoint2& point0 = edgeMap[ZERO];
const RPoint2& point1 = edgeMap[ONE];
edgeMap[t] = point0 + (point1 - point0)*t;
}
}
//----------------------------------------------------------------------------
void CreateEnvelope::UpdateEdges (EdgeMap& edgeMap0, EdgeMap& edgeMap1)
{
const RPoint2& U0 = edgeMap0[0];
const RPoint2& U1 = edgeMap0[1];
const RPoint2& V0 = edgeMap1[0];
const RPoint2& V1 = edgeMap1[1];
// The segments have a common point when U0+s*(U1-U0) = V0+t*(V1-V0) for
// some values s and t with 0 <= s <= 1 and 0 <= t <= 1. Rearranging
// the terms and applying some algebra,
// s*(U1-U0) - t*(V1-V0) = V0-U0
// s*DotPerp(U1-U0,V1-V0) = DotPerp(V0-U0,V1-V0)
// t*DotPerp(U1-U0,V1-V0) = DotPerp(V0-U0,U1-U0)
// where I used the identities DotPerp(U,V) = -DotPerp(V,U) and
// DotPerp(W,W) = 0. Using the notation in the other PfEdgesIntersect
// comments, we have s*C = B and t*C = A. As long as C is not zero, the
// parameters are s = B/C and t = A/C. These correspond to the
// intersection of two lines. The segments intersect at these values
// as long as 0 <= A/C <= 1 and 0 <= B/C <= 1
RPoint2 U1mU0 = U1 - U0;
RPoint2 V1mV0 = V1 - V0;
RPoint2 V0mU0 = V0 - U0;
RScalar A = V0mU0.DotPerp(U1mU0);
RScalar B = V0mU0.DotPerp(V1mV0);
RScalar C = U1mU0.DotPerp(V1mV0);
if (A*(A - C) <= ZERO && B*(B - C) <= ZERO)
{
if (C != ZERO)
{
RScalar invC = ONE/C;
RScalar tU = B*invC;
RScalar tV = A*invC;
InsertParameter(edgeMap0, tU);
InsertParameter(edgeMap1, tV);
return;
}
// C = 0, so the two inequalities above force A = 0 and B = 0, in
// which case the segments are collinear.
RPoint2 V1mU0 = V1 - U0;
RScalar numer0 = V0mU0.Dot(U1mU0);
RScalar numer1 = V1mU0.Dot(U1mU0);
RScalar invDenom = ONE/U1mU0.Dot(U1mU0);
RScalar tmin, tmax;
C = U1mU0.Dot(V1mV0);
bool bCPositive = (C > ZERO);
if (bCPositive)
{
// U1-U0 and V1-V0 in same direction.
tmin = numer0*invDenom;
tmax = numer1*invDenom;
}
else
{
// U1-U0 and V1-V0 in opposite directions.
tmax = numer0*invDenom;
tmin = numer1*invDenom;
}
// Segment <U0,U1> maps to parameters [0,1] and segment <V0,V1> maps
// to parameters [tmin,tmax]. Edge updates only occur if the
// intervals overlap at more than a single point.
if (ZERO < tmax && ONE > tmin)
{
RPoint2 U1mV0;
RScalar denom, s;
if (ZERO < tmin)
{
if (ONE > tmax)
{
// Intersection is [tmin,tmax], <V0,V1> in <U0,U1>.
InsertParameter(edgeMap0, tmin);
InsertParameter(edgeMap0, tmax);
}
else
{
// Intersection is [tmin,1], U1 in <V0,V1>.
InsertParameter(edgeMap0,tmin);
U1mV0 = U1 - V0;
numer1 = U1mV0.Dot(V1mV0);
denom = V1mV0.Dot(V1mV0);
s = numer1/denom;
InsertParameter(edgeMap1, s);
}
}
else
{
if (ONE > tmax)
{
// Intersection is [0,tmax], U0 in <V0,V1>.
InsertParameter(edgeMap0,tmax);
numer0 = -V0mU0.Dot(V1mV0);
denom = V1mV0.Dot(V1mV0);
s = numer0/denom;
InsertParameter(edgeMap1, s);
}
else
{
// Intersection is [0,1], <U0,U1> in <V0,V1>.
numer0 = -V0mU0.Dot(V1mV0);
invDenom = ONE/V1mV0.Dot(V1mV0);
s = numer0*invDenom;
InsertParameter(edgeMap1, s);
U1mV0 = U1 - V0;
numer1 = U1mV0.Dot(V1mV0);
s = numer1*invDenom;
InsertParameter(edgeMap1, s);
}
}
}
}
}
//----------------------------------------------------------------------------
void CreateEnvelope::UpdateAllEdges (int numEdges, EdgeMap** edgeMaps)
{
// Construct the axis-aligned bounding boxes of the edgeMaps.
RPoint2* rmin = new1<RPoint2>(numEdges);
RPoint2* rmax = new1<RPoint2>(numEdges);
int i;
for (i = 0; i < numEdges; ++i)
{
EdgeMap& edgeMap = *edgeMaps[i];
RPoint2& end0 = edgeMap[ZERO];
RPoint2& end1 = edgeMap[ONE];
if (end0.X() <= end1.X())
{
rmin[i].X() = end0.X();
rmax[i].X() = end1.X();
}
else
{
rmin[i].X() = end1.X();
rmax[i].X() = end0.X();
}
if (end0.Y() <= end1.Y())
{
rmin[i].Y() = end0.Y();
rmax[i].Y() = end1.Y();
}
else
{
rmin[i].Y() = end1.Y();
rmax[i].Y() = end0.Y();
}
}
// Store the x-extremes for the AABBs in a data structure to be sorted.
// The "Type" field indicates whether the x-value is the minimum (Type
// is 0) or maximum (Type is 1). The "Index" field stores the edge
// index for use as a lookup in the overlap tests.
int numEndpoints = 2*numEdges;
std::vector<Endpoint> xEndpoints(numEndpoints);
int j;
for (i = 0, j = 0; i < numEdges; ++i)
{
xEndpoints[j].Type = 0;
xEndpoints[j].Value = rmin[i].X();
xEndpoints[j].Index = i;
++j;
xEndpoints[j].Type = 1;
xEndpoints[j].Value = rmax[i].X();
xEndpoints[j].Index = i;
++j;
}
// Sort the x-values.
std::sort(xEndpoints.begin(), xEndpoints.end());
// The active set of rectangles (stored by index in array).
std::set<int> active;
// The set of overlapping rectangles (stored by index pairs in array).
std::set<std::pair<int,int> > overlap;
// Sweep through the endpoints to determine overlapping x-intervals.
for (i = 0; i < numEndpoints; ++i)
{
Endpoint& end = xEndpoints[i];
int index = end.Index;
if (end.Type == 0) // an interval 'begin' value
{
// The current AABB overlaps in the x-direction with all the
// active intervals. Now check for y-overlap.
std::set<int>::iterator iter = active.begin();
for (/**/; iter != active.end(); ++iter)
{
// Rectangles iAIndex and index overlap in the x-dimension.
// Test for overlap in the y-dimension.
int activeIndex = *iter;
if (rmax[activeIndex].Y() >= rmin[activeIndex].Y()
&& rmin[activeIndex].Y() <= rmax[activeIndex].Y())
{
// If the edgeMaps share an endpoint, there is no need to
// test later for overlap.
EdgeMap& edgeMap0 = *edgeMaps[index];
EdgeMap& edgeMap1 = *edgeMaps[activeIndex];
RPoint2& E0P0 = edgeMap0[ZERO];
RPoint2& E0P1 = edgeMap0[ONE];
RPoint2& E1P0 = edgeMap1[ZERO];
RPoint2& E1P1 = edgeMap1[ONE];
if (E0P0 == E1P0 || E0P0 == E1P1
|| E0P1 == E1P0 || E0P1 == E1P1)
{
continue;
}
overlap.insert(std::make_pair(activeIndex, index));
}
}
active.insert(index);
}
else // an interval 'end' value
{
active.erase(index);
}
}
// Search for edge-edge intersections by comparing only those edgeMaps whose
// AABBs overlap.
std::set<std::pair<int,int> >::const_iterator iter = overlap.begin();
std::set<std::pair<int,int> >::const_iterator end = overlap.end();
for (/**/; iter != end; ++iter)
{
int i0 = iter->first;
int i1 = iter->second;
EdgeMap& edgeMap0 = *edgeMaps[i0];
EdgeMap& edgeMap1 = *edgeMaps[i1];
UpdateEdges(edgeMap0, edgeMap1);
}
delete1(rmax);
delete1(rmin);
}
//----------------------------------------------------------------------------
|