File: DeformableBall.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 90,124 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 40
file content (369 lines) | stat: -rw-r--r-- 12,659 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.2 (2015/11/25)

#include "DeformableBall.h"
#include "Wm5Environment.h"
#include "Wm5ExtractSurfaceCubes.h"
#include "Wm5Texture2DEffect.h"
#include "Wm5VertexBufferAccessor.h"
using namespace Wm5;

//----------------------------------------------------------------------------
DeformableBall::DeformableBall (float duration, float period)
{
    Set(duration, period);
    mDeforming = false;
    mDoAffine = true;
    CreateBall();
}
//----------------------------------------------------------------------------
DeformableBall::~DeformableBall ()
{
    delete1(mNormal);
    delete1(mMean);
    delete1(mNeighborCount);
}
//----------------------------------------------------------------------------
void DeformableBall::Set (float duration, float period)
{
    mDuration = duration;
    mDeformMult = 4.0f/(mDuration*mDuration);
    mPeriod = period;
    mMinActive = 0.5f*(mPeriod - mDuration);
    mMaxActive = 0.5f*(mPeriod + mDuration);
    mInvActiveRange = 1.0f/(mMaxActive - mMinActive);
}
//----------------------------------------------------------------------------
void DeformableBall::CreateBall ()
{
    // Create initial image for surface extraction (16 x 16 x 16).
    const int bound = 16;
    float invBoundM1 = 1.0f/(bound - 1);
    int* data = new1<int>(bound*bound*bound);
    ExtractSurfaceCubes extractor(bound, bound, bound, data);

    // Scale function values to [-1024,1024].
    const float imageScale = 1024.0f;

    // Initialize image and extract level surface F = 0.  Data stores samples
    // for (x,y,z) in [-1,1]x[-1,1]x[0,2].
    AVector position;
    position[3] = 0.0f;
    int i = 0;
    for (int z = 0; z < bound; ++z)
    {
        position[2] = -0.1f + 2.2f*invBoundM1*z;
        for (int y = 0; y < bound; ++y)
        {
            position[1] = -1.1f + 2.2f*invBoundM1*y;
            for (int x = 0; x < bound; ++x, ++i)
            {
                position[0] = -1.1f + 2.2f*invBoundM1*x;

                float function;
                AVector gradient;
                ComputeFunction(position, 0.0f, function, gradient);
                data[i] = (int)(imageScale*function);
            }
        }
    }

    // Extract the level surface.
    std::vector<Vector3f> vertices;
    std::vector<TriangleKey> triangles;
    extractor.ExtractContour(0.0f, vertices, triangles);
    extractor.MakeUnique(vertices, triangles);
    extractor.OrientTriangles(vertices, triangles, true);
    delete1(data);

    // Convert to TriMesh object.  Keep track of the level value of the
    // vertices.  Since a vertex might not be exactly on the level surface,
    // we will use
    //     e = max{|F(x,y,z)| : (x,y,z) is a vertex}
    // as the error tolerance for Newton's method in the level surface
    // evolution.
    VertexFormat* vformat = VertexFormat::Create(2,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_TEXCOORD, VertexFormat::AT_FLOAT2, 0);
    int vstride = vformat->GetStride();

    int numVertices = (int)vertices.size();
    VertexBuffer* vbuffer = new VertexBuffer(numVertices, vstride);
    VertexBufferAccessor vba(vformat, vbuffer);
    float maxLevel = 0.0f;
    for (i = 0; i < numVertices; ++i)
    {
        Vector3f vertex = vertices[i];
        Vector3f& pos = vba.Position<Vector3f>(i);
        pos[0] = -1.1f + 2.2f*invBoundM1*vertex[0];
        pos[1] = -1.1f + 2.2f*invBoundM1*vertex[1];
        pos[2] = -0.1f + 2.2f*invBoundM1*vertex[2];

        float level = pos.SquaredLength() - 2.0f*pos[2];
        if (Mathf::FAbs(level) > maxLevel)
        {
            maxLevel = Mathf::FAbs(level);
        }

        float temp = Mathf::ATan2(pos[1], pos[2])/Mathf::PI;
        float width = 0.5f*(1.0f + temp);  // in [0,1)
        if (width < 0.0f)
        {
            width = 0.0f;
        }
        else if (width >= 1.0f)
        {
            width = 0.999999f;
        }

        float height = 0.5f*pos[2]; // in [0,1)
        if (height < 0.0f)
        {
            height = 0.0f;
        }
        else if (height >= 1.0f)
        {
            height = 0.999999f;
        }

        vba.TCoord<Float2>(0, i) = Float2(width, height);
    }

    int numTriangles = (int)triangles.size();
    int numIndices = 3*numTriangles;
    IndexBuffer* ibuffer = new0 IndexBuffer(numIndices, sizeof(int));
    int* indices = (int*)ibuffer->GetData();
    for (i = 0; i < numTriangles; ++i)
    {
        *indices++ = triangles[i].V[0];
        *indices++ = triangles[i].V[1];
        *indices++ = triangles[i].V[2];
    }

    mMesh = new TriMesh(vformat, vbuffer, ibuffer);

    // Create a texture effect for the ball.
    std::string path = Environment::GetPathR("BallTexture.wmtf");
    Texture2D* texture = Texture2D::LoadWMTF(path);
    mMesh->SetEffectInstance(Texture2DEffect::CreateUniqueInstance(texture,
        Shader::SF_LINEAR, Shader::SC_REPEAT, Shader::SC_REPEAT));

    mMaxIterations = 8;
    mErrorTolerance = maxLevel;
    CreateSmoother();
    Update(0.0f);
}
//----------------------------------------------------------------------------
void DeformableBall::CreateSmoother ()
{
    int numVertices = mMesh->GetVertexBuffer()->GetNumElements();
    mNormal = new1<AVector>(numVertices);
    mMean = new1<AVector>(numVertices);
    mNeighborCount = new1<int>(numVertices);

    // Count the number of vertex neighbors.
    memset(mNeighborCount, 0, numVertices*sizeof(int));
    int numTriangles = mMesh->GetNumTriangles();
    const int* indices = (const int*)mMesh->GetIndexBuffer()->GetData();
    for (int i = 0; i < numTriangles; ++i)
    {
        mNeighborCount[*indices++] += 2;
        mNeighborCount[*indices++] += 2;
        mNeighborCount[*indices++] += 2;
    }
}
//----------------------------------------------------------------------------
void DeformableBall::Update (float time)
{
    int numVertices = mMesh->GetVertexBuffer()->GetNumElements();
    int numTriangles = mMesh->GetNumTriangles();
    const int* indices = (const int*)mMesh->GetIndexBuffer()->GetData();
    VertexBufferAccessor vba(mMesh);

    memset(mNormal, 0, numVertices*sizeof(AVector));
    memset(mMean, 0, numVertices*sizeof(AVector));

    int i;
    for (i = 0; i < numTriangles; ++i)
    {
        int i0 = *indices++;
        int i1 = *indices++;
        int i2 = *indices++;

        AVector v0 = vba.Position<Float3>(i0);
        AVector v1 = vba.Position<Float3>(i1);
        AVector v2 = vba.Position<Float3>(i2);

        AVector edge1 = v1 - v0;
        AVector edge2 = v2 - v0;
        AVector normal = edge1.Cross(edge2);

        mNormal[i0] += normal;
        mNormal[i1] += normal;
        mNormal[i2] += normal;

        mMean[i0] += v1 + v2;
        mMean[i1] += v2 + v0;
        mMean[i2] += v0 + v1;
    }

    for (i = 0; i < numVertices; ++i)
    {
        mNormal[i].Normalize();
        mMean[i] /= (float)mNeighborCount[i];
    }

    for (i = 0; i < numVertices; ++i)
    {
        AVector position = vba.Position<Float3>(i);
        if (VertexInfluenced(i, time, position))
        {
            AVector localDiff = mMean[i] - position;
            AVector surfaceNormal = localDiff.Dot(mNormal[i])*mNormal[i];
            AVector tangent = localDiff - surfaceNormal;
            float tWeight = GetTangentWeight(i, time, position);
            float nWeight = GetNormalWeight(i, time, position);
            position += tWeight*tangent + nWeight*mNormal[i];
            vba.Position<Float3>(i) = position;
        }
    }
}
//----------------------------------------------------------------------------
bool DeformableBall::DoSimulationStep (float realTime)
{
    float time = fmodf(realTime, mPeriod);

    if (mMinActive < time && time < mMaxActive)
    {
        // Deform the mesh.
        mDeforming = true;
        Update(time);

        if (mDoAffine)
        {
            // Nonuniform scaling as a hack to make it appear that the body is
            // compressing in the z-direction.  The transformations only
            // affect the display.  If the actual body coordinates were needed
            // for other physics, you would have to modify the mesh vertices.
            //
            // The x- and y-scales vary from 1 to 1.1 to 1 during the time
            // interval [(p-d)/2,(p+d)/2].  The z-scale is the inverse of this
            // scale.  (Expand radially, compress in z-direction.)
            const float maxExpand = 0.1f;
            float amp = 4.0f*maxExpand*mInvActiveRange;
            float xyScale = 1.0f + amp*(time-mMinActive)*(mMaxActive-time);
            float zScale = 1.0f/xyScale;
            mMesh->LocalTransform.SetScale(APoint(xyScale, xyScale, zScale));
        }

        // Deformation requires update of bounding sphere.
        mMesh->UpdateModelSpace(Visual::GU_MODEL_BOUND_ONLY);

        // update occurred, application should update the scene graph
        return true;
    }

    if (mDeforming)
    {
        // Force restoration of body to its initial state on a transition
        // from deforming to nondeforming.
        mDeforming = false;
        Update(0.0f);
        if (mDoAffine)
        {
            mMesh->LocalTransform.SetRotate(HMatrix::IDENTITY);
        }
        mMesh->UpdateModelSpace(Visual::GU_MODEL_BOUND_ONLY);
        return true;
    }

    mDeforming = false;
    return false;
}
//----------------------------------------------------------------------------
bool DeformableBall::VertexInfluenced (int, float time,
    const AVector& position)
{
    float rSqr = position.SquaredLength();
    return rSqr < 1.0f && mMinActive < time && time < mMaxActive;
}
//----------------------------------------------------------------------------
float DeformableBall::GetTangentWeight (int, float, const AVector&)
{
    return 0.5f;
}
//----------------------------------------------------------------------------
float DeformableBall::GetNormalWeight (int i, float time,
    const AVector& position)
{
    // Find root of F along line origin+s*dir using Newton's method.
    float s = 0.0f;
    for (int iter = 0; iter < mMaxIterations; ++iter)
    {
        // Point of evaluation.
        AVector evalPosition = position + s*mNormal[i];

        // Get F(pos,time) and Grad(F)(pos,time).
        float function;
        AVector gradient;
        ComputeFunction(evalPosition, time, function, gradient);
        if (Mathf::FAbs(function) < mErrorTolerance)
        {
            return s;
        }

        // Get directional derivative Dot(dir,Grad(F)(pos,time)).
        float derFunction = mNormal[i].Dot(gradient);
        if (Mathf::FAbs(derFunction) < mErrorTolerance)
        {
            // Derivative too close to zero, no change.
            return 0.0f;
        }

        s -= function/derFunction;
    }

    // Method failed to converge within iteration budget, no change.
    return 0.0f;
}
//----------------------------------------------------------------------------
void DeformableBall::ComputeFunction (const AVector& position, float time,
    float& function, AVector& gradient)
{
    // Level function is L(X,t) = F(X) + D(X,t) where F(X) = 0 defines the
    // initial body.

    // Compute F(X) = x^2 + y^2 + z^2 - 2*z and Grad(F)(X).
    float rSqr = position.SquaredLength();
    float F = rSqr - 2.0f*position[2];
    AVector FGrad = 2.0f*(position - AVector::UNIT_Z);

    // Compute D(X,t) = A(t)*G(X).  The duration is d and the period is p.
    // The amplitude is
    //   A(t) = 0, t in [0,p/2-d]
    //          [t-(p/2-d)][(p/2+d)-t]/d^2, t in [p/2-d,p/2+d]
    //          0, t in [p/2+d,p]
    // The spatial component is G(X) = 1 - (x^2 + y^2 + z^2)
    float D;
    AVector DGrad;
    if (rSqr < 1.0f && mMinActive < time && time < mMaxActive)
    {
        float amp = GetAmplitude(time);
        D = amp*(1.0f - rSqr);
        DGrad = -2.0f*amp*position;
    }
    else
    {
        D = 0.0f;
        DGrad = AVector::ZERO;
    }

    function = F + D;
    gradient = FGrad + DGrad;
}
//----------------------------------------------------------------------------