1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.0 (2010/01/01)
#include "CollisionsBoundTree.h"
WM5_WINDOW_APPLICATION(CollisionsBoundTree);
//----------------------------------------------------------------------------
CollisionsBoundTree::CollisionsBoundTree ()
:
WindowApplication3("SamplePhysics/CollisionsBoundTree", 0, 0, 640, 480,
Float4(1.0f, 1.0f, 1.0f, 1.0f)),
mBlueUV(0.25f, 0.25f),
mRedUV(0.25f, 0.75f),
mCyanUV(0.75f, 0.25f),
mYellowUV(0.75f, 0.75f),
mTextColor(0.0f, 0.0f, 0.0f, 1.0f)
{
mGroup = 0;
}
//----------------------------------------------------------------------------
bool CollisionsBoundTree::OnInitialize ()
{
if (!WindowApplication3::OnInitialize())
{
return false;
}
// Set up the camera.
mCamera->SetFrustum(60.0f, GetAspectRatio(), 1.0f, 1000.0f);
APoint camPosition(4.0f, 0.0f, 0.0f);
AVector camDVector(-1.0f, 0.0f, 0.0f);
AVector camUVector(0.0f, 0.0f, 1.0f);
AVector camRVector = camDVector.Cross(camUVector);
mCamera->SetFrame(camPosition, camDVector, camUVector, camRVector);
CreateScene();
// Initial update of objects.
mScene->Update();
// Initial culling of scene.
mCuller.SetCamera(mCamera);
mCuller.ComputeVisibleSet(mScene);
InitializeCameraMotion(0.01f, 0.01f);
InitializeObjectMotion(mScene);
return true;
}
//----------------------------------------------------------------------------
void CollisionsBoundTree::OnTerminate ()
{
delete0(mGroup);
mScene = 0;
mCylinder0 = 0;
mCylinder1 = 0;
mWireState = 0;
WindowApplication3::OnTerminate();
}
//----------------------------------------------------------------------------
void CollisionsBoundTree::OnIdle ()
{
MeasureTime();
if (MoveCamera())
{
mCuller.ComputeVisibleSet(mScene);
}
if (MoveObject())
{
mScene->Update();
mCuller.ComputeVisibleSet(mScene);
}
if (mRenderer->PreDraw())
{
mRenderer->ClearBuffers();
mRenderer->Draw(mCuller.GetVisibleSet());
DrawFrameRate(8, GetHeight()-8, mTextColor);
mRenderer->PostDraw();
mRenderer->DisplayColorBuffer();
}
UpdateFrameCount();
}
//----------------------------------------------------------------------------
bool CollisionsBoundTree::OnKeyDown (unsigned char key, int x, int y)
{
// Move the tall/thin cylinder and activate the collision system.
if (Transform(key))
{
return true;
}
switch (key)
{
case 'w':
case 'W':
mWireState->Enabled = !mWireState->Enabled;
return true;
}
return WindowApplication3::OnKeyDown(key, x, y);
}
//----------------------------------------------------------------------------
void CollisionsBoundTree::CreateScene ()
{
// The root of the scene will have two cylinders as children.
mScene = new0 Node();
mWireState = new0 WireState();
mRenderer->SetOverrideWireState(mWireState);
mCullState = new0 CullState();
mCullState->Enabled = false;
mRenderer->SetOverrideCullState(mCullState);
// Create a texture image to be used by both cylinders.
Texture2D* texture = new0 Texture2D(Texture::TF_A8R8G8B8, 2, 2, 1);
unsigned int* data = (unsigned int*)texture->GetData(0);
data[0] = Color::MakeR8G8B8(0, 0, 255); // blue
data[1] = Color::MakeR8G8B8(0, 255, 255); // cyan
data[2] = Color::MakeR8G8B8(255, 0, 0); // red
data[3] = Color::MakeR8G8B8(255, 255, 0); // yellow
Texture2DEffect* effect = new0 Texture2DEffect(Shader::SF_LINEAR);
// Create two cylinders, one short and thick, one tall and thin.
VertexFormat* vformat = VertexFormat::Create(2,
VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
VertexFormat::AU_TEXCOORD, VertexFormat::AT_FLOAT2, 0);
StandardMesh sm(vformat);
VertexBufferAccessor vba;
int i;
mCylinder0 = sm.Cylinder(8, 16, 1.0f, 2.0f, false);
vba.ApplyTo(mCylinder0);
for (i = 0; i < vba.GetNumVertices(); ++i)
{
vba.TCoord<Float2>(0, i) = mBlueUV;
}
mCylinder0->SetEffectInstance(effect->CreateInstance(texture));
mScene->AttachChild(mCylinder0);
mCylinder1 = sm.Cylinder(16,8,0.25,4.0,false);
vba.ApplyTo(mCylinder1);
for (i = 0; i < vba.GetNumVertices(); ++i)
{
vba.TCoord<Float2>(0, i) = mRedUV;
}
mCylinder1->SetEffectInstance(effect->CreateInstance(texture));
mScene->AttachChild(mCylinder1);
mScene->Update();
// Set up the collision system. Record0 handles the collision response.
// Record1 is not given a callback so that 'double processing' of the
// events does not occur.
CTree* tree0 = new0 CTree(mCylinder0, 1, false);
CRecord* record0 = new0 CRecord(tree0, 0, Response, this);
CTree* tree1 = new0 CTree(mCylinder1, 1, false);
CRecord* record1 = new0 CRecord(tree1, 0, 0, 0);
mGroup = new0 CGroup();
mGroup->Add(record0);
mGroup->Add(record1);
ResetColors();
mGroup->TestIntersection();
}
//----------------------------------------------------------------------------
bool CollisionsBoundTree::Transform (unsigned char key)
{
// Move the tall/thin cylinder. After each motion, reset the texture
// coordinates to the "no intersection" state, then let the collision
// system test for intersection. Any intersecting triangles have their
// texture coordinates changed to the "intersection" state.
float trnSpeed = 0.1f;
float rotSpeed = 0.1f;
HMatrix rot, incr;
APoint trn;
switch (key)
{
case 'x':
trn = mCylinder1->LocalTransform.GetTranslate();
trn[0] -= trnSpeed;
mCylinder1->LocalTransform.SetTranslate(trn);
break;
case 'X':
trn = mCylinder1->LocalTransform.GetTranslate();
trn[0] += trnSpeed;
mCylinder1->LocalTransform.SetTranslate(trn);
break;
case 'y':
trn = mCylinder1->LocalTransform.GetTranslate();
trn[1] -= trnSpeed;
mCylinder1->LocalTransform.SetTranslate(trn);
break;
case 'Y':
trn = mCylinder1->LocalTransform.GetTranslate();
trn[1] += trnSpeed;
mCylinder1->LocalTransform.SetTranslate(trn);
break;
case 'z':
trn = mCylinder1->LocalTransform.GetTranslate();
trn[2] -= trnSpeed;
mCylinder1->LocalTransform.SetTranslate(trn);
break;
case 'Z':
trn = mCylinder1->LocalTransform.GetTranslate();
trn[2] += trnSpeed;
mCylinder1->LocalTransform.SetTranslate(trn);
break;
case 'r':
rot = mCylinder1->LocalTransform.GetRotate();
incr.MakeRotation(AVector::UNIT_X, rotSpeed);
mCylinder1->LocalTransform.SetRotate(incr*rot);
break;
case 'R':
rot = mCylinder1->LocalTransform.GetRotate();
incr.MakeRotation(AVector::UNIT_X, -rotSpeed);
mCylinder1->LocalTransform.SetRotate(incr*rot);
break;
case 'a':
rot = mCylinder1->LocalTransform.GetRotate();
incr.MakeRotation(AVector::UNIT_Y, rotSpeed);
mCylinder1->LocalTransform.SetRotate(incr*rot);
break;
case 'A':
rot = mCylinder1->LocalTransform.GetRotate();
incr.MakeRotation(AVector::UNIT_Y, -rotSpeed);
mCylinder1->LocalTransform.SetRotate(incr*rot);
break;
case 'p':
rot = mCylinder1->LocalTransform.GetRotate();
incr.MakeRotation(AVector::UNIT_Z, rotSpeed);
mCylinder1->LocalTransform.SetRotate(incr*rot);
break;
case 'P':
rot = mCylinder1->LocalTransform.GetRotate();
incr.MakeRotation(AVector::UNIT_Z, -rotSpeed);
mCylinder1->LocalTransform.SetRotate(incr*rot);
break;
default:
return false;
}
// Activate the collision system.
mCylinder1->Update();
ResetColors();
mGroup->TestIntersection();
return true;
}
//----------------------------------------------------------------------------
void CollisionsBoundTree::ResetColors ()
{
VertexBufferAccessor vba(mCylinder0);
int i;
for (i = 0; i < vba.GetNumVertices(); ++i)
{
vba.TCoord<Float2>(0, i) = mBlueUV;
}
mRenderer->Update(mCylinder0->GetVertexBuffer());
vba.ApplyTo(mCylinder1);
for (i = 0; i < vba.GetNumVertices(); ++i)
{
vba.TCoord<Float2>(0, i) = mRedUV;
}
mRenderer->Update(mCylinder1->GetVertexBuffer());
}
//----------------------------------------------------------------------------
void CollisionsBoundTree::Response (CRecord& record0, int t0,
CRecord& record1, int t1, Intersector<float,Vector3f>*)
{
CollisionsBoundTree* app = (CollisionsBoundTree*)TheApplication;
// Mesh0 triangles that are intersecting change from blue to cyan.
TriMesh* mesh = record0.GetMesh();
VertexBufferAccessor vba(mesh);
const int* indices = (int*)mesh->GetIndexBuffer()->GetData();
int i0 = indices[3*t0];
int i1 = indices[3*t0 + 1];
int i2 = indices[3*t0 + 2];
vba.TCoord<Float2>(0, i0) = app->mCyanUV;
vba.TCoord<Float2>(0, i1) = app->mCyanUV;
vba.TCoord<Float2>(0, i2) = app->mCyanUV;
app->mRenderer->Update(mesh->GetVertexBuffer());
// Mesh1 triangles that are intersecting change from red to yellow.
mesh = record1.GetMesh();
vba.ApplyTo(mesh);
indices = (int*)mesh->GetIndexBuffer()->GetData();
i0 = indices[3*t1];
i1 = indices[3*t1 + 1];
i2 = indices[3*t1 + 2];
vba.TCoord<Float2>(0 ,i0) = app->mYellowUV;
vba.TCoord<Float2>(0, i1) = app->mYellowUV;
vba.TCoord<Float2>(0, i2) = app->mYellowUV;
app->mRenderer->Update(mesh->GetVertexBuffer());
// NOTE: See the comments in Wm5CollisionGroup.h about information that
// is available from the Intersector<float,Vector3f> object.
}
//----------------------------------------------------------------------------
|