1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.2.0 (2010/06/21)
#include "RTSphereTriangle.h"
//----------------------------------------------------------------------------
// Compute the squared distance from Q to the triangle.
//----------------------------------------------------------------------------
static float SqrDistance (Vector3f Q, const TriangleStruct& tri,
Vector3f& closest)
{
Vector3f QmP0 = Q - tri.P[0];
Vector3f QmP1 = Q - tri.P[1];
Vector3f QmP2 = Q - tri.P[2];
float dot0 = tri.EN[0].Dot(QmP0);
float dot1 = tri.EN[1].Dot(QmP1);
float dot2 = tri.EN[2].Dot(QmP2);
float E0dQmP0, E0dQmP1, E1dQmP1, E1dQmP2, E2dQmP2, E2dQmP0;
if (dot0 > 0.0f)
{
if (dot1 > 0.0f)
{
if (dot2 > 0.0f)
{
// +++ (Cannot reach this case. Not all three edges can be
// visible from outside the triangle.)
assertion(false, "Theoreticaly cannot reach this.\n");
closest = (tri.P[0] + tri.P[1] + tri.P[2])/3.0f;
Vector3f diff = Q - closest;
return diff.Dot(diff);
}
else
{
// ++- (E0 and E1 visible)
E0dQmP0 = tri.E[0].Dot(QmP0);
if (E0dQmP0 <= 0.0f)
{
// P0 is closest feature.
closest = tri.P[0];
return QmP0.Dot(QmP0);
}
E0dQmP1 = tri.E[0].Dot(QmP1);
if (E0dQmP1 < 0.0f)
{
// E0 is closest feature.
closest = tri.P[0] + E0dQmP0*tri.E[0];
return fabsf(QmP0.Dot(QmP0) - E0dQmP0*E0dQmP0);
}
E1dQmP1 = tri.E[1].Dot(QmP1);
if (E1dQmP1 <= 0.0f)
{
// P1 is closest feature.
closest = tri.P[1];
return QmP1.Dot(QmP1);
}
E1dQmP2 = tri.E[1].Dot(QmP2);
if (E1dQmP2 < 0.0f)
{
// E1 is closest feature.
closest = tri.P[1] + E1dQmP1*tri.E[1];
return fabsf(QmP1.Dot(QmP1) - E1dQmP1*E1dQmP1);
}
// P2 is closest feature.
closest = tri.P[2];
return QmP2.Dot(QmP2);
}
}
else
{
if (dot2 > 0.0f)
{
// +-+ (E2 and E0 visible)
E2dQmP2 = tri.E[2].Dot(QmP2);
if (E2dQmP2 <= 0.0f)
{
// P2 is closest feature.
closest = tri.P[2];
return QmP2.Dot(QmP2);
}
E2dQmP0 = tri.E[2].Dot(QmP0);
if (E2dQmP0 < 0.0f)
{
// E2 is closest feature.
closest = tri.P[2] + E2dQmP2*tri.E[2];
return fabsf(QmP2.Dot(QmP2) - E2dQmP2*E2dQmP2);
}
E0dQmP0 = tri.E[0].Dot(QmP0);
if (E0dQmP0 <= 0.0f)
{
// P0 is closest feature.
closest = tri.P[0];
return QmP0.Dot(QmP0);
}
E0dQmP1 = tri.E[0].Dot(QmP1);
if (E0dQmP1 < 0.0f)
{
// E0 is closest feature.
closest = tri.P[0] + E0dQmP0*tri.E[0];
return fabsf(QmP0.Dot(QmP0) - E0dQmP0*E0dQmP0);
}
// P1 is closest feature.
closest = tri.P[1];
return QmP1.Dot(QmP1);
}
else
{
// +-- (E0 visible)
E0dQmP0 = tri.E[0].Dot(QmP0);
if (E0dQmP0 <= 0.0f)
{
// P0 is closest feature.
closest = tri.P[0];
return QmP0.Dot(QmP0);
}
E0dQmP1 = tri.E[0].Dot(QmP1);
if (E0dQmP1 < 0.0f)
{
// E0 is closest feature.
closest = tri.P[0] + E0dQmP0*tri.E[0];
return fabsf(QmP0.Dot(QmP0) - E0dQmP0*E0dQmP0);
}
// P1 is closest feature.
closest = tri.P[1];
return QmP1.Dot(QmP1);
}
}
}
else
{
if (dot1 > 0.0f)
{
if (dot2 > 0.0f)
{
// -++ (E1 and E2 visible)
E1dQmP1 = tri.E[1].Dot(QmP1);
if (E1dQmP1 <= 0.0f)
{
// P1 is closest feature.
closest = tri.P[1];
return QmP1.Dot(QmP1);
}
E1dQmP2 = tri.E[1].Dot(QmP2);
if (E1dQmP2 < 0.0f)
{
// E1 is closest feature.
closest = tri.P[1] + E1dQmP1*tri.E[1];
return fabsf(QmP1.Dot(QmP1) - E1dQmP1*E1dQmP1);
}
E2dQmP2 = tri.E[2].Dot(QmP2);
if (E2dQmP2 <= 0.0f)
{
// P2 is closest feature.
closest = tri.P[2];
return QmP2.Dot(QmP2);
}
E2dQmP0 = tri.E[2].Dot(QmP0);
if (E2dQmP0 < 0.0f)
{
// E2 is closest feature.
closest = tri.P[2] + E2dQmP2*tri.E[2];
return fabsf(QmP2.Dot(QmP2) - E2dQmP2*E2dQmP2);
}
// P0 is closest feature.
closest = tri.P[0];
return QmP0.Dot(QmP0);
}
else
{
// -+- (E1 visible)
E1dQmP1 = tri.E[1].Dot(QmP1);
if (E1dQmP1 <= 0.0f)
{
// P1 is closest feature.
closest = tri.P[1];
return QmP1.Dot(QmP1);
}
E1dQmP2 = tri.E[1].Dot(QmP2);
if (E1dQmP2 < 0.0f)
{
// E1 is closest feature.
closest = tri.P[1] + E1dQmP1*tri.E[1];
return fabsf(QmP1.Dot(QmP1) - E1dQmP1*E1dQmP1);
}
// P2 is closest feature.
closest = tri.P[2];
return QmP2.Dot(QmP2);
}
}
else
{
if (dot2 > 0.0f)
{
// --+ (E2 visible)
E2dQmP2 = tri.E[2].Dot(QmP2);
if (E2dQmP2 <= 0.0f)
{
// P2 is closest feature.
closest = tri.P[2];
return QmP2.Dot(QmP2);
}
E2dQmP0 = tri.E[2].Dot(QmP0);
if (E2dQmP0 < 0.0f)
{
// E2 is closest feature.
closest = tri.P[2] + E2dQmP2*tri.E[2];
return fabsf(QmP2.Dot(QmP2) - E2dQmP2*E2dQmP2);
}
// P0 is closest feature.
closest = tri.P[0];
return QmP0.Dot(QmP0);
}
else
{
// --- (projection of point inside triangle)
float NdQmP0 = tri.N.Dot(QmP0);
closest = Q - NdQmP0*tri.N;
return fabsf(NdQmP0);
}
}
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Clip C+t*V with [t0,t1] against the plane Dot(N,X-P) = 0, discarding that
// portion of the interval on the side of the plane to which N is directed.
// The return value is 'true' when a nonempty interval exists after clipping.
//----------------------------------------------------------------------------
static bool ClipAgainstPlane (const Vector3f& C, const Vector3f& V,
const Vector3f& N, const Vector3f& P, float& t0, float& t1)
{
// Define f(t) = Dot(N,C+t*V-P)
// = Dot(N,C-P) + t*Dot(N,V)
// = a0 + t*a1
// Evaluate at the endpoints of the time interval.
float a0 = N.Dot(C - P);
float a1 = N.Dot(V);
float f0 = a0 + t0*a1;
float f1 = a0 + t1*a1;
// Clip [t0,t1] against the plane. There are nine cases to consider,
// depending on the signs of f0 and f1.
if (f0 > 0.0f)
{
if (f1 > 0.0f)
{
// The segment is strictly outside the plane.
return false;
}
else if (f1 < 0.0f)
{
// The segment intersects the plane at an edge-interior point.
// T = -a0/a1 is the time of intersection, so discard [t0,T].
t0 = -a0/a1;
}
else // f1 == 0.0f
{
// The segment is outside the plane but touches at the
// t1-endpoint, so discard [t0,t1] (degenerate to a point).
t0 = t1;
}
}
else if (f0 < 0.0f)
{
if (f1 > 0.0f)
{
// The segment intersects the plane at an edge-interior point.
// T = -a0/a1 is the time of intersection, so discard [T,t1].
t1 = -a0/a1;
}
}
else // f0 == 0.0f
{
if (f1 > 0.0f)
{
// The segment is outside the plane but touches at the
// t0-endpoint, so discard [t0,t1] (degenerate to a point).
t1 = t0;
}
}
return true;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Compute the intersection of the segment C+t*V, [0,tMax], with the sphere
// |X-P| = r. The function returns 'true' iff [t0,t1] is a nonempty interval.
//----------------------------------------------------------------------------
static bool IntersectLineSphere (const SphereStruct& sphere,
const Vector3f& V, const Vector3f& P, const float tMax, float& t0,
float& t1)
{
t0 = 0.0f;
t1 = tMax;
// Compute the coefficients for the quadratic equation
// Q(t) = |C+t*V-P|^2 - r^2 = q0 + 2*q1*t + q2*t^2.
Vector3f CmP = sphere.C - P;
float q2 = V.Dot(V); // not zero in this application
float q1 = V.Dot(CmP);
float q0 = CmP.Dot(CmP) - sphere.RSqr;
float discr = q1*q1 - q0*q2;
if (discr >= 0.0f)
{
// Q(t) has two distinct real-valued roots (discr > 0) or one repeated
// real-valued root (discr == 0).
float invQ2 = 1.0f/q2;
float rootDiscr = sqrtf(discr);
float root0 = (-q1 - rootDiscr)*invQ2;
float root1 = (-q1 + rootDiscr)*invQ2;
// Compute the intersection of [0,tMax] with [root0,root1].
if (t1 < root0 || t0 > root1)
{
// The intersection is empty.
return false;
}
if (t1 == root0)
{
// The intersection is a single point.
t0 = root0;
t1 = root0;
return true;
}
if (t0 == root1)
{
// The intersection is a single point.
t0 = root1;
t1 = root1;
return true;
}
// Here we know that t1 > root0 and t0 < root1.
if (t0 < root0)
{
t0 = root0;
}
if (t1 > root1)
{
t1 = root1;
}
return true;
}
else
{
// Q(t) has no real-valued roots.
return false;
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Compute the intersection of the segment C+t*V, [0,tMax], with a finite
// cylinder. The cylinder has center P, radius r, height h, and axis
// direction U2. The set {U0,U1,U2} is orthonormal and right-handed. In the
// coordinate system of the cylinder, a point A = P + x*U0 + y*U1 + z*U2. To
// be inside the cylinder, x*x + y*y <= r*r and |z| <= h/2. The function
// returns 'true' iff [t0,t1] is a nonempty interval.
//----------------------------------------------------------------------------
static bool IntersectLineCylinder (const SphereStruct& sph,
const Vector3f& V, const Vector3f& P, const Vector3f& U0,
const Vector3f& U1, const Vector3f& U2, float halfHeight,
const float tMax, float& t0, float& t1)
{
t0 = 0.0f;
t1 = tMax;
// Clip against the plane caps.
if (!ClipAgainstPlane(sph.C, V, U2, P + halfHeight*U2, t0, t1)
|| !ClipAgainstPlane(sph.C, V, -U2, P - halfHeight*U2, t0, t1))
{
return false;
}
// In cylinder coordinates, C+t*V = P + x(t)*U0 + y(t)*U1 + z(t)*U2,
// x(t) = Dot(U0,C+t*V-P) = a0 + t*b0, y(t) = Dot(U1,C+t*V-P) = a1 + t*b1
Vector3f CmP = sph.C - P;
float a0 = U0.Dot(CmP), b0 = U0.Dot(V);
float a1 = U1.Dot(CmP), b1 = U1.Dot(V);
// Clip the segment [t0,t1] against the cylinder wall.
float x0 = a0 + t0*b0, y0 = a1 + t0*b1, r0Sqr = x0*x0 + y0*y0;
float x1 = a0 + t1*b0, y1 = a1 + t1*b1, r1Sqr = x1*x1 + y1*y1;
float rSqr = sph.RSqr;
// Some case require computing intersections of the segment with the
// circle of radius r. This amounts to finding roots for the quadratic
// Q(t) = x(t)*x(t) + y(t)*y(t) - r*r = q2*t^2 + 2*q1*t + q0, where
// q0 = a0*a0+b0*b0-r*r, q1 = a0*a1+b0*b1, and q2 = a1*a1+b1*b1. Compute
// the coefficients only when needed.
float q0, q1, q2, T;
if (r0Sqr > rSqr)
{
if (r1Sqr > rSqr)
{
q2 = b0*b0 + b1*b1;
if (q2 > 0.0f)
{
q0 = a0*a0 + a1*a1 - rSqr;
q1 = a0*b0 + a1*b1;
float discr = q1*q1 - q0*q2;
if (discr < 0.0f)
{
// The quadratic has no real-valued roots, so the
// segment is outside the cylinder.
return false;
}
float rootDiscr = sqrtf(discr);
float invQ2 = 1.0f/q2;
float root0 = (-q1 - rootDiscr)*invQ2;
float root1 = (-q1 + rootDiscr)*invQ2;
// We know that (x0,y0) and (x1,y1) are outside the
// cylinder, so Q(t0) > 0 and Q(t1) > 0. This reduces
// the number of cases to analyze for intersection of
// [t0,t1] and [root0,root1].
if (t1 < root0 || t0 > root1)
{
// The segment is strictly outside the cylinder.
return false;
}
else
{
// [t0,t1] strictly contains [root0,root1]
t0 = root0;
t1 = root1;
}
}
else // q2 == 0.0f and q1 = 0.0f; that is, Q(t) = q0
{
// The segment is degenerate, a point that is outside the
// cylinder.
return false;
}
}
else if (r1Sqr < rSqr)
{
// Solve nondegenerate quadratic and clip. There must be a single
// root T in [t0,t1]. Discard [t0,T].
q0 = a0*a0 + a1*a1 - rSqr;
q1 = a0*b0 + a1*b1;
q2 = b0*b0 + b1*b1;
t0 = (-q1 - sqrtf(fabsf(q1*q1 - q0*q2)))/q2;
}
else // r1Sqr == rSqr
{
// The segment intersects the circle at t1. The other root is
// necessarily T = -t1-2*q1/q2. Use it only when T <= t1, in
// which case discard [t0,T].
q1 = a0*b0 +a1*b1;
q2 = b0*b0 + b1*b1;
T = -t1 - 2.0f*q1/q2;
t0 = (T < t1 ? T : t1);
}
}
else if (r0Sqr < rSqr)
{
if (r1Sqr > rSqr)
{
// Solve nondegenerate quadratic and clip. There must be a single
// root T in [t0,t1]. Discard [T,t1].
q0 = a0*a0 + a1*a1 - rSqr;
q1 = a0*b0 + a1*b1;
q2 = b0*b0 + b1*b1;
t1 = (-q1 + sqrtf(fabsf(q1*q1 - q0*q2)))/q2;
}
// else: The segment is inside the cylinder.
}
else // r0Sqr == rSqr
{
if (r1Sqr > rSqr)
{
// The segment intersects the circle at t0. The other root is
// necessarily T = -t0-2*q1/q2. Use it only when T >= t0, in
// which case discard [T,t1].
q1 = a0*b0 + a1*b1;
q2 = b0*b0 + b1*b1;
T = -t0 - 2.0f*q1/q2;
t1 = (T > t0 ? T : t0);
}
// else: The segment is inside the cylinder.
}
return true;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Compute the intersection of the segment C+t*V, [0,tMax], with the extruded
// triangle whose faces are Dot(N,X-P0) = r, Dot(-N,X-P0) = r,
// Dot(EN0,X-P0) = 0, Dot(EN1,X-P1) = 0, and Dot(EN2,X-P2) = 0. The function
// returns 'true' iff [t0,t1] is a nonempty interval.
//----------------------------------------------------------------------------
static bool IntersectLinePolyhedron (const SphereStruct& sph,
const Vector3f& V, const TriangleStruct& tri, const float tMax,
float& t0, float& t1)
{
t0 = 0.0f;
t1 = tMax;
return
ClipAgainstPlane(sph.C, V, tri.N, tri.P[0] + sph.R*tri.N, t0, t1) &&
ClipAgainstPlane(sph.C, V, -tri.N, tri.P[0] - sph.R*tri.N, t0, t1) &&
ClipAgainstPlane(sph.C, V, tri.EN[0], tri.P[0], t0, t1) &&
ClipAgainstPlane(sph.C, V, tri.EN[1], tri.P[1], t0, t1) &&
ClipAgainstPlane(sph.C, V, tri.EN[2], tri.P[2], t0, t1);
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
ContactType Collide (const SphereStruct& sph, const Vector3f& sphVelocity,
const TriangleStruct& tri, const Vector3f& triVelocity, float tMax,
float& contactTime, Vector3f& contactPoint)
{
// Test the sphere-triangle relationship at time zero.
float sqrDistance = SqrDistance(sph.C, tri, contactPoint);
if (sqrDistance < sph.RSqr)
{
contactTime = 0.0f;
return OVERLAPPING;
}
else if (sqrDistance == sph.RSqr)
{
contactTime = 0.0f;
return CONTACT;
}
// The sphere and triangle are initially separated. Compute the velocity
// of the sphere relative to triangle, so the triangle is then stationary.
Vector3f V = sphVelocity - triVelocity;
if (V == Vector3f::ZERO)
{
// The objects are stationary relative to each other.
return SEPARATED;
}
float t0Intr = FLT_MAX, t1Intr = -FLT_MAX;
float t0, t1;
if (IntersectLinePolyhedron(sph, V, tri, tMax, t0, t1))
{
if (t0 < t0Intr)
{
t0Intr = t0;
}
if (t1 > t1Intr)
{
t1Intr = t1;
}
}
int i;
for (i = 0; i < 3; ++i)
{
if (IntersectLineCylinder(sph, V, tri.M[i], tri.N, tri.EN[i],
tri.E[i], tri.H[i], tMax, t0, t1))
{
if (t0 < t0Intr)
{
t0Intr = t0;
}
if (t1 > t1Intr)
{
t1Intr = t1;
}
}
}
for (i = 0; i < 3; ++i)
{
if (IntersectLineSphere(sph, V, tri.P[i], tMax, t0, t1))
{
if (t0 < t0Intr)
{
t0Intr = t0;
}
if (t1 > t1Intr)
{
t1Intr = t1;
}
}
}
if (t0Intr <= t1Intr)
{
contactTime = t0Intr;
sqrDistance = SqrDistance(sph.C + contactTime*V, tri, contactPoint);
contactPoint += contactTime*triVelocity;
return CONTACT;
}
else
{
return SEPARATED;
}
}
//----------------------------------------------------------------------------
|