File: lda_x.c

package info (click to toggle)
libxc 4.3.4-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 58,520 kB
  • sloc: ansic: 19,150; perl: 1,157; python: 803; f90: 639; makefile: 317; sh: 107
file content (256 lines) | stat: -rw-r--r-- 6,827 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*
 Copyright (C) 2006-2007 M.A.L. Marques

 This Source Code Form is subject to the terms of the Mozilla Public
 License, v. 2.0. If a copy of the MPL was not distributed with this
 file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/


#include "util.h"

#define XC_LDA_X         1   /* Exchange                            */
#define XC_LDA_C_XALPHA  6   /* Slater Xalpha                       */
#define XC_LDA_X_RAE   549   /* Rae self-energy corrected exchange  */

/*  
    Slater's Xalpha functional (Exc = alpha Ex)
    
    Note: this is to be added to the exchange

    This correlation functional, added to the exchange functional, produces
    a total exchange-correlation functional, Exc, equal to 3/2 * alpha * Ex 
    Setting alpha equal to one gives the *usual* Slater Xalpha functional,
    whereas alpha equal to 2/3 just leaves the exchange functional unchanged.
*/

/* Range separation
    J. Toulouse, A. Savin, H.-J. Flad, Int. J. of Quant. Chem. 100, 1047-1056 (2004).
*/

typedef struct{
  double alpha;       /* parameter for Xalpha functional */
} lda_x_params;

static void 
lda_x_init(xc_func_type *p)
{
  lda_x_params *params;

  assert(p != NULL && p->params == NULL);
  p->params = malloc(sizeof(lda_x_params));
  params = (lda_x_params *) (p->params);

  params->alpha = 1.0;
}

/*
    Int. J. of Quant. Chem. 100, 1047-1056 (2004)
    J. Chem. Phys. 120, 8425 (2004)
*/
void
xc_lda_x_attenuation_function_erf(int order, double aa, double *f, double *df, double *d2f, double *d3f)
{
  double aa2, auxa1, auxa2, auxa3;
  
  aa2 = aa*aa;

  auxa1 = M_SQRTPI*erf(1.0/(2.0*aa));
  
  if(aa < 1.0e6) 
    auxa2 = exp(-1.0/(4.0*aa2)) - 1.0;
  else
    auxa2 = -1.0/(4.0*aa2);
  
  auxa3 = 2.0*aa2*auxa2 + 0.5;
  
  switch(order) {
  default:
  case 3:
    *d3f = -256.0*aa + 8.0*(1.0 + 8.0*aa2 + 32.0*aa2*aa2)*(auxa2 + 1.0)/(aa*aa2);
  case 2:
    *d2f = 16.0*(2.0 + (1.0 + 8.0*aa2)*auxa2);
  case 1:
    *df  = 8.0/3.0 * (4.0*aa - 2.0*(1.0 - 8.0*aa2)*aa*auxa2 - auxa1);
  case 0:
    *f   = 1.0 - 8.0/3.0*aa*(auxa1 + 2.0*aa*(auxa2 - auxa3));
  }
}


/* Int. J. of Quant. Chem. 100, 1047-1056 (2004) */
void
xc_lda_x_attenuation_function_erf_gau(int order, double aa, double *f, double *df, double *d2f, double *d3f)
{
  double bb, bb2, bb3, auxb1, auxb2;

  xc_lda_x_attenuation_function_erf(order, aa, f, df, d2f, d3f);

  bb  = aa/M_SQRT3;
  bb2 = bb*bb;
  bb3 = bb*bb2;
  auxb1 = M_SQRTPI*erf(1.0/(2.0*bb));
  auxb2 = exp(-1.0/(4.0*bb2));

  switch(order) {
  default:
  case 3:
    *d3f -=  8.0/9.0*(-384.0*bb + 3.0*(1.0 + 8.0*bb2*(1.0 + bb2*(8.0 + bb2*32.0))*auxb2/(2.0*bb2*bb2*bb)));
  case 2:
    *d2f -= 8.0/(3.0*M_SQRT3)*(12.0 - 192.0*bb2 + 3.0*(1.0/bb2 + 12.0 + 64.0*bb2)*auxb2);
  case 1:
    *df -= 8.0/3.0*(4.0*bb*(3.0 - 16.0*bb2 + (1.0 + 16.0*bb2)*auxb2) - auxb1);
  case 0:
    *f += 8.0/M_SQRT3*bb*(auxb1 - 6.0*bb + 16.0*bb3 + (2.0*bb - 16*bb3)*auxb2);
  }
}

/* Chem. Phys. Lett. 462(2008) 348-351 */
void
xc_lda_x_attenuation_function_yukawa(int order, double aa, double *f, double *df, double *d2f, double *d3f)
{
  double aa2, aa3;
  double auxa1, auxa2, auxa3;

  aa2 = aa*aa;

  if (aa > 50.0) {
    aa3 = aa*aa2;

    /* One can also use the following expansions to circumvent the double switch-case ladder

       auxa1 = 1.0/aa - 1/ (3.0*aa3) + 1.0/(5.0*aa3*aa2);
       auxa2 = 1.0/aa2 - 1./(2.0*aa2*aa2) + 1.0/(3.0*aa3*aa3);
       auxa3 = (aa2 + 1);
    */
    switch(order) {
    default:	/* > 3 - catch-22 */
    case 3:
      *d3f = 4.0/(aa2*aa2*aa3) - 8.0/(aa3*aa3);
    case 2:
      *d2f = 2.0/(3.0*aa2*aa2) - 2.0/(3.0*aa3*aa3);
    case 1:
      *df = 2.0/(15.0*aa2*aa3) - 2.0/(9.0*aa3);
    case 0:
      *f = 1.0/(9.0*aa2) - 1.0/(30.0*aa2*aa2);
    }
  } else {
    auxa1 = atan2(1.0, aa);
    auxa2 = log(1.0 + (1.0/aa2));
    auxa3 = aa2 + 1.0;

    switch (order) {
    default:	/* > 3 - catch-22 */
    case 3:
      *d3f = 16.0*aa*auxa2 - 8.0*(2.0*aa2 + 1.0)/(aa*auxa3);
    case 2:
      *d2f = 4.0*(2.0*aa2 + 1.0)*auxa2 - 8.0;
    case 1:
      *df = 4.0/3.0 * (aa*(2.0*aa2 + 3.0)*auxa2 - 2.0*(aa + auxa1));
    case 0:
      *f = 1.0 - 8.0/3.0*aa*(auxa1 + aa/4.0* (1.0 - (auxa3 + 2.0)*auxa2));
    }
  }
}

void
xc_lda_x_attenuation_function(int interaction, int order, double aa, 
                               double *f, double *df, double *d2f, double *d3f)
{
  switch(interaction){
  case XC_RSF_ERF:
    xc_lda_x_attenuation_function_erf(order, aa, f, df, d2f, d3f);
    break;
  case XC_RSF_ERF_GAU:
    xc_lda_x_attenuation_function_erf_gau(order, aa, f, df, d2f, d3f);
    break;
  case XC_RSF_YUKAWA:
    xc_lda_x_attenuation_function_yukawa(order, aa, f, df, d2f, d3f);
    break;
  default:
    fprintf(stderr, "Unknown interaction in lda_x_attenuation_function\n");
    exit(1);
  }
}

#include "maple2c/lda_x.c"

#define func maple2c_func
#include "work_lda.c"

const xc_func_info_type xc_func_info_lda_x = {
  XC_LDA_X,
  XC_EXCHANGE,
  "Slater exchange",
  XC_FAMILY_LDA,
  {&xc_ref_Dirac1930_376, &xc_ref_Bloch1929_545, NULL, NULL, NULL},
  XC_FLAGS_3D | XC_FLAGS_HAVE_EXC | XC_FLAGS_HAVE_VXC | XC_FLAGS_HAVE_FXC | XC_FLAGS_HAVE_KXC,
  1e-24,
  0, NULL, NULL,
  lda_x_init, NULL,
  work_lda, NULL, NULL
};

static const func_params_type ext_params[] = {
  {1.0, "X-alpha multiplicative parameter"},
};

static void 
set_ext_params(xc_func_type *p, const double *ext_params)
{
  lda_x_params *params;
  double ff;

  assert(p != NULL && p->params != NULL);
  params = (lda_x_params *)(p->params);

  ff = (ext_params == NULL) ? p->info->ext_params[0].value : ext_params[0];
  params->alpha = 1.5*ff - 1.0;
}

const xc_func_info_type xc_func_info_lda_c_xalpha = {
  XC_LDA_C_XALPHA,
  XC_CORRELATION,
  "Slater's Xalpha",
  XC_FAMILY_LDA,
  {&xc_ref_Slater1951_385, NULL, NULL, NULL, NULL},
  XC_FLAGS_3D | XC_FLAGS_HAVE_EXC | XC_FLAGS_HAVE_VXC | XC_FLAGS_HAVE_FXC | XC_FLAGS_HAVE_KXC,
  1e-24,
  1, ext_params, set_ext_params,
  lda_x_init, NULL,
  work_lda, NULL, NULL
};

static const func_params_type N_ext_params[] = {
  {1.0, "Number of electrons"},
};

static void 
N_set_ext_params(xc_func_type *p, const double *ext_params)
{
  lda_x_params *params;
  double ff, N, dx, dx2;

  assert(p != NULL && p->params != NULL);
  params = (lda_x_params *)(p->params);

  ff = (ext_params == NULL) ? p->info->ext_params[0].value : ext_params[0];
  N = ff;

  dx  = 1.0/CBRT(4.0*N);
  dx2 = dx*dx;
  params->alpha = 1.0 - 8.0/3.0*dx + 2.0*dx2 - dx2*dx2/3.0;
}

const xc_func_info_type xc_func_info_lda_x_rae = {
  XC_LDA_X_RAE,
  XC_EXCHANGE,
  "Rae self-energy corrected exchange",
  XC_FAMILY_LDA,
  {&xc_ref_Rae1973_574, NULL, NULL, NULL, NULL},
  XC_FLAGS_3D | XC_FLAGS_HAVE_EXC | XC_FLAGS_HAVE_VXC | XC_FLAGS_HAVE_FXC | XC_FLAGS_HAVE_KXC,
  1e-24,
  1, N_ext_params, N_set_ext_params,
  lda_x_init, NULL,
  work_lda, NULL, NULL
};