File: work_mgga_x.c

package info (click to toggle)
libxc 4.3.4-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 58,520 kB
  • sloc: ansic: 19,150; perl: 1,157; python: 803; f90: 639; makefile: 317; sh: 107
file content (179 lines) | stat: -rw-r--r-- 5,608 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*
 Copyright (C) 2006-2008 M.A.L. Marques

 This Source Code Form is subject to the terms of the Mozilla Public
 License, v. 2.0. If a copy of the MPL was not distributed with this
 file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/

/************************************************************************
  This file is to be included in meta GGA exchange functionals. As often these
  functionals are written as a function of s = |grad n|/n^(4/3) and tau, this
  routine performs the necessary conversions between a functional of s and tau
  and of rho.
************************************************************************/


/* WARNING Kinetic energy functionals are still not working */


#ifndef XC_DIMENSIONS
#  define XC_DIMENSIONS 3
#endif

static void
#ifdef XC_KINETIC_FUNCTIONAL
work_mgga_k
#else
work_mgga_x
#endif
(const xc_func_type *p, int np,
 const double *rho, const double *sigma, const double *lapl, const double *tau,
 double *zk, double *vrho, double *vsigma, double *vlapl, double *vtau,
 double *v2rho2, double *v2sigma2, double *v2lapl2, double *v2tau2,
 double *v2rhosigma, double *v2rholapl, double *v2rhotau, 
 double *v2sigmalapl, double *v2sigmatau, double *v2lapltau)
{
  xc_mgga_work_x_t r;
  double sfact, sfact2, x_factor_c, beta, dens;
  double min_grad = p->dens_threshold;
  int is, ip;

  /* WARNING: derivatives are _not_ OK for 2 dimensions */
#if XC_DIMENSIONS == 2
  const double cnst_rs = 1.0/M_SQRTPI;
  x_factor_c = X_FACTOR_2D_C;
#else /* three dimensions */
  const double cnst_rs = RS_FACTOR;
  x_factor_c = X_FACTOR_C;
#endif

  /* initialize everything to zero */
  memset(&r, 0, sizeof(r));

  r.order = -1;
  if(zk     != NULL) r.order = 0;
  if(vrho   != NULL) r.order = 1;
  if(v2rho2 != NULL) r.order = 2;
  if(r.order < 0) return;

  sfact = (p->nspin == XC_POLARIZED) ? 1.0 : 2.0;
  sfact2 = sfact*sfact;
  
  for(ip = 0; ip < np; ip++){
    xc_rho2dzeta(p->nspin, rho, &dens, &r.zeta);

    if(dens < p->dens_threshold) goto end_ip_loop;

    r.rs = cnst_rs*pow(dens, -1.0/XC_DIMENSIONS);

    for(is=0; is<p->nspin; is++){
      double lrho, rho1D, rho2pD_D, lsigma, gdm, lnr2, ltau;
      int js = (is == 0) ? 0 : 2;
      int ls = (is == 0) ? 0 : 3;
      int ks = (is == 0) ? 0 : 5;

      if (rho[is] < p->dens_threshold) continue;

      lsigma= max(sigma[js]/sfact2, min_grad*min_grad);
      gdm   = sqrt(lsigma);
      lrho  = rho[is]/sfact;
      rho1D = pow(lrho, 1.0/XC_DIMENSIONS);
      rho2pD_D = lrho*rho1D*rho1D;
      r.x   = gdm/(lrho*rho1D);
    
      ltau  = tau[is]/sfact;
      r.t   = ltau/rho2pD_D;  /* tau/rho^((2+D)/D) */

      if(p->info->flags & XC_FLAGS_NEEDS_LAPLACIAN){
        lnr2  = lapl[is]/sfact; /* this can be negative */
        r.u   = lnr2/rho2pD_D;  /* lapl/rho^((2+D)/D) */
      }

      func(p, &r);

      if(zk != NULL && (p->info->flags & XC_FLAGS_HAVE_EXC))
	*zk += -sfact*x_factor_c*(lrho*rho1D)*r.f;

      if(vrho != NULL && (p->info->flags & XC_FLAGS_HAVE_VXC)){
	vrho[is]  = -x_factor_c*rho1D*(-r.rs*r.dfdrs + 4.0/3.0*(r.f - r.dfdx*r.x) - 5.0/3.0*(r.dfdt*r.t + r.dfdu*r.u));

	vtau[is]  = -x_factor_c*r.dfdt/rho1D;

        if(p->info->flags & XC_FLAGS_NEEDS_LAPLACIAN)
          vlapl[is] = -x_factor_c*r.dfdu/rho1D;

	if(gdm>min_grad)
	  vsigma[js] = -x_factor_c*(rho1D*lrho)*r.dfdx*r.x/(2.0*sfact*lsigma);
      }

      /* WARNING: terms with rs not implemented yet */
      if(v2rho2 != NULL && (p->info->flags & XC_FLAGS_HAVE_FXC)){
	v2rho2[js]    = -x_factor_c/(9.0*sfact*rho1D*rho1D)*
	  (4.0*r.f - 4.0*r.x*r.dfdx + 4.0*4.0*r.x*r.x*r.d2fdx2 + 5.0*5.0*r.t*r.t*r.d2fdt2 + 5.0*5.0*r.u*r.u*r.d2fdu2 +
	   2.0*5.0*(4.0*r.x*r.t*r.d2fdxt + 4.0*r.x*r.u*r.d2fdxu + 5.0*r.t*r.u*r.d2fdtu));

	v2tau2[js]    = -x_factor_c*r.d2fdt2/(sfact*rho1D*rho2pD_D);

        if(p->info->flags & XC_FLAGS_NEEDS_LAPLACIAN){
          v2lapl2[js]   = -x_factor_c*r.d2fdu2/(sfact*rho1D*rho2pD_D);

          v2rholapl[ls] = -x_factor_c*rho1D/(3.0*sfact*rho2pD_D)*
            (4.0*r.dfdu - 4.0*r.x*r.d2fdxu - 5.0*r.t*r.d2fdtu - 5.0*(r.dfdu + r.u*r.d2fdu2));

          v2lapltau[ls] = -x_factor_c*r.d2fdtu/(rho1D*rho2pD_D);
        }

	v2rhotau[ls]  = -x_factor_c*rho1D/(3.0*sfact*rho2pD_D)*
	  (4.0*r.dfdt - 4.0*r.x*r.d2fdxt - 5.0*r.u*r.d2fdtu - 5.0*(r.dfdt + r.t*r.d2fdt2));

	if(gdm > min_grad){
	  v2sigma2[ks]    =  -x_factor_c*(rho1D*lrho)/(4.0*sfact2*sfact*lsigma*lsigma)*
	    (r.d2fdx2*r.x*r.x - r.dfdx*r.x);

	  v2rhosigma[ks]  = -x_factor_c*rho1D*r.x/(3.0*2.0*sfact2*lsigma)*
	    (-4.0*r.x*r.d2fdx2 - 5.0*r.t*r.d2fdxt - 5.0*r.u*r.d2fdxu);

          if(p->info->flags & XC_FLAGS_NEEDS_LAPLACIAN)
            v2sigmalapl[ks] = -x_factor_c*r.x/(2.0*sfact2*lsigma*rho1D)*r.d2fdxu;

          v2sigmatau[ks]  = -x_factor_c*r.x/(2.0*sfact2*lsigma*rho1D)*r.d2fdxt;

	}
      }
    }
    
    if(zk != NULL)
      *zk /= dens; /* we want energy per particle */

  end_ip_loop:
    /* increment pointers */
    rho   += p->n_rho;
    sigma += p->n_sigma;
    tau   += p->n_tau;
    lapl  += p->n_lapl;
    
    if(zk != NULL)
      zk += p->n_zk;
    
    if(vrho != NULL){
      vrho   += p->n_vrho;
      vsigma += p->n_vsigma;
      vtau   += p->n_vtau;
      vlapl  += p->n_vlapl;
    }

    if(v2rho2 != NULL){
      v2rho2      += p->n_v2rho2;
      v2sigma2    += p->n_v2sigma2;
      v2tau2      += p->n_v2tau2;
      v2lapl2     += p->n_v2lapl2;
      v2rhosigma  += p->n_v2rhosigma;
      v2rhotau    += p->n_v2rhotau;
      v2rholapl   += p->n_v2rholapl;
      v2sigmatau  += p->n_v2sigmatau;
      v2sigmalapl += p->n_v2sigmalapl;
      v2lapltau   += p->n_v2lapltau;
    }
  }
}