1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
(*
Copyright (C) 2017 M.A.L. Marques
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
*)
# Minimum and maximum functions that I can differentiate
m_min := (x1, x2) -> my_piecewise3(x1 > x2, x2, x1):
m_max := (x1, x2) -> my_piecewise3(x1 > x2, x1, x2):
m_abs := (x) -> my_piecewise3(x > 0, x, -x):
# Teach maple to differentiate piecewise functions
`diff/my_piecewise3` :=
proc(c, x1, x2, x) my_piecewise3(c, diff(x1, x), diff(x2, x)) end proc:
`diff/my_piecewise5` :=
proc(c1, x1, c2, x2, x3, x) my_piecewise5(c1, diff(x1, x), c2, diff(x2, x), diff(x3,x)) end proc:
# This is the derivative of xc_E1_scaled = -exp(x)*Ei(-x) = exp(x)E1(x)
`diff/xc_E1_scaled` :=
proc(y, x) (xc_E1_scaled(y) - 1/y) * diff(y, x) end proc:
# The derivative of xc_erfcx = exp(x^2)*erfc(x) = 2*x*xc_erfcx(x) - 2/sqrt(Pi)
`diff/xc_erfcx` :=
proc(y, x) (2*y*xc_erfcx(y) - 2/sqrt(Pi)) * diff(y, x) end proc:
# a series of useful definitions
M_C := 137.0359996287515: (* speed of light *)
X2S := 1/(2*(6*Pi^2)^(1/3)):
X2S_2D := 1/(2*(4*Pi)^(1/2)):
X_FACTOR_C := 3/8*(3/Pi)^(1/3)*4^(2/3):
X_FACTOR_2D_C := 8/(3*sqrt(Pi)):
K_FACTOR_C := 3/10*(6*Pi^2)^(2/3):
MU_GE := 10/81:
MU_PBE := 0.06672455060314922*(Pi^2)/3:
KAPPA_PBE := 0.8040:
# generic conversion functions
$ifdef xc_dimensions_1d
DIMENSIONS := 1:
RS_FACTOR := 1/2:
$elif xc_dimensions_2d
DIMENSIONS := 2:
RS_FACTOR := 1/sqrt(Pi):
LDA_X_FACTOR := -X_FACTOR_2D_C:
$else
DIMENSIONS := 3:
RS_FACTOR := (3/(4*Pi))^(1/3):
LDA_X_FACTOR := -X_FACTOR_C:
$endif
r_ws := n -> RS_FACTOR/n^(1/DIMENSIONS):
n_total := rs -> (RS_FACTOR/rs)^DIMENSIONS:
n_spin := (rs, z) -> simplify((1 + z)*n_total(rs)/2):
sigma_spin := (rs, z, xs) -> simplify(xs^2*n_spin(rs, z)^(8/3)):
t_total := (z, ts0, ts1) ->
(ts0*((1 + z)/2)^(5/3) + ts1*((1 - z)/2)^(5/3)):
u_total := (z, us0, us1) -> t_total(z, us0, us1):
# useful formulas that enter several functionals follow
# von Weizsäcker term
t_vw := (z, xt, us0, us1) -> (xt^2 - u_total(z, us0, us1))/8:
# Screening for extreme values of zeta
z_thr := z -> my_piecewise5(
1 + z <= p_a_zeta_threshold, p_a_zeta_threshold - 1,
1 - z <= p_a_zeta_threshold, 1 - p_a_zeta_threshold,
z):
opz_pow_n := (z, n) -> my_piecewise3(1 + z <= p_a_zeta_threshold, (p_a_zeta_threshold)^n, (1 + z)^n):
# See Eq. (9) of Perdew1992_13244
f_zeta := z -> (opz_pow_n(z,4/3) + opz_pow_n(-z,4/3) - 2)/(2^(4/3) - 2):
f_zeta_2d := z -> 1/2*(opz_pow_n(z,3/2) + opz_pow_n(-z,3/2)):
# used in several correlation functionals
mphi := z -> (opz_pow_n(z,2/3) + opz_pow_n(-z,2/3))/2:
tt := (rs, z, xt) -> xt/(4*2^(1/3)*mphi(z)*sqrt(rs)):
# in the paper it is beta_a = 0.066725
beta_Hu_Langreth := rs -> 0.066724550603149220*(1 + 0.1*rs)/(1 + 0.1778*rs):
# Generate exchange and kinetic functionals from the expression for the
# enhancement factor
lda_x_spin := (rs, z) -> simplify(LDA_X_FACTOR*opz_pow_n(z,1 + 1/DIMENSIONS)*2^(-1-1/DIMENSIONS)*(RS_FACTOR/rs)):
lda_k_spin := (rs, z) -> simplify(K_FACTOR_C*opz_pow_n(z,5/3)*2^(-5/3)*(RS_FACTOR/rs)^2):
# Screen out small densities as well as the zero component from fully spin polarized densities due to terms of the form (1+z)^{-n}
screen_dens := (rs, z) -> (n_spin(rs, z) <= p_a_dens_threshold):
# For most functionals zeta screening occurs inside the funcitonal,
# but for B88 and B94 correlation need to screen out also outside
screen_dens_zeta := (rs, z) -> screen_dens(rs, z) or (1 + z <= p_a_zeta_threshold):
# non-separable GGA exchange
gga_exchange_nsp := (func, rs, z, xs0, xs1) ->
+ my_piecewise3(screen_dens(rs, z), 0, lda_x_spin(rs, z_thr( z))*func(rs, z_thr( z), xs0))
+ my_piecewise3(screen_dens(rs, -z), 0, lda_x_spin(rs, z_thr(-z))*func(rs, z_thr(-z), xs1)):
# GGA exchange
gga_exchange := (func, rs, z, xs0, xs1) ->
+ my_piecewise3(screen_dens(rs, z), 0, lda_x_spin(rs, z_thr( z))*func(xs0))
+ my_piecewise3(screen_dens(rs, -z), 0, lda_x_spin(rs, z_thr(-z))*func(xs1)):
# GGA kinetic energy
gga_kinetic := (func, rs, z, xs0, xs1) ->
+ my_piecewise3(screen_dens(rs, z), 0, lda_k_spin(rs, z_thr( z))*func(xs0))
+ my_piecewise3(screen_dens(rs, -z), 0, lda_k_spin(rs, z_thr(-z))*func(xs1)):
# non-separable meta-GGA exchange
mgga_exchange_nsp := (func, rs, z, xs0, xs1, u0, u1, t0, t1) ->
+ my_piecewise3(screen_dens(rs, z), 0, lda_x_spin(rs, z_thr( z))*func(rs, z_thr( z), xs0, u0, t0))
+ my_piecewise3(screen_dens(rs, -z), 0, lda_x_spin(rs, z_thr(-z))*func(rs, z_thr(-z), xs1, u1, t1)):
# meta-GGA exchange
mgga_exchange := (func, rs, z, xs0, xs1, u0, u1, t0, t1) ->
+ my_piecewise3(screen_dens(rs, z), 0, lda_x_spin(rs, z_thr( z))*func(xs0, u0, t0))
+ my_piecewise3(screen_dens(rs, -z), 0, lda_x_spin(rs, z_thr(-z))*func(xs1, u1, t1)):
# meta-GGA kinetic energy
mgga_kinetic := (func, rs, z, xs0, xs1, u0, u1) ->
+ my_piecewise3(screen_dens(rs, z), 0, lda_k_spin(rs, z_thr( z))*func(xs0, u0))
+ my_piecewise3(screen_dens(rs, -z), 0, lda_k_spin(rs, z_thr(-z))*func(xs1, u1)):
# This is the Stoll decomposition in our language
lda_stoll_par := (lda_func, rs, z) ->
my_piecewise3(screen_dens_zeta(rs, z), 0, opz_pow_n(z, 1)/2 * lda_func(rs*2^(1/3)*opz_pow_n(z, -1/3), 1)):
lda_stoll_perp := (lda_func, rs, z) ->
+ lda_func(rs, z)
- lda_stoll_par(lda_func, rs, z)
- lda_stoll_par(lda_func, rs, -z):
gga_stoll_par := (gga_func, rs, z, xs, spin) ->
my_piecewise3(screen_dens_zeta(rs, z), 0,
gga_func(rs*2^(1/3)*opz_pow_n(z,-1/3), spin, xs, xs*(1 + spin)/2, xs*(1 - spin)/2) * opz_pow_n(z,1)/2):
# Curvature of the Fermi hole (without the current term)
Fermi_D := (xs, ts) -> 1 - xs^2/(8*ts):
# correction to Fermi_D similar to the one found in
# JCP 127, 214103 (2007); doi: http://dx.doi.org/10.1063/1.2800011
Fermi_D_corrected := (xs, ts) -> (1 - xs^2/(8*ts)) * (1 - exp(-4*ts^2/params_a_Fermi_D_cnst^2)):
# Becke function used in several correlation functionals
b88_R_F := (f_x, rs, z, xs) -> 1/(2*X_FACTOR_C*n_spin(rs, z)^(1/3)*f_x(xs)):
b88_zss := (css, f_x, rs, z, xs) -> 2*css*b88_R_F(f_x, rs, z, xs):
b88_zab := (cab, f_x, rs, z, xs0, xs1) -> cab*(
+ my_piecewise3(screen_dens(rs, z), 0, b88_R_F(f_x, rs, z_thr( z), xs0))
+ my_piecewise3(screen_dens(rs, -z), 0, b88_R_F(f_x, rs, z_thr(-z), xs1))
):
# The meta-GGA version
b94_R_F := (f_x, rs, z, xs, us, ts) -> 1/(2*X_FACTOR_C*n_spin(rs, z)^(1/3)*f_x(xs,us,ts)):
b94_zss := (css, f_x, rs, z, xs, us, ts) -> 2*css*b94_R_F(f_x, rs, z, xs, us, ts):
b94_zab := (cab, f_x, rs, z, xs0, xs1, us0, us1, ts0, ts1) -> cab*(
+ my_piecewise3(screen_dens(rs, z), 0, b94_R_F(f_x, rs, z_thr( z), xs0, us0, ts0))
+ my_piecewise3(screen_dens(rs, -z), 0, b94_R_F(f_x, rs, z_thr(-z), xs1, us1, ts1))
):
# Power series often used in mggas
mgga_w := t -> (K_FACTOR_C - t)/(K_FACTOR_C + t):
mgga_series_w := (a, n, t) -> add(a[i]*mgga_w(t)^(i-1), i=1..n):
# Used in screened functionals
kF := (rs, z) -> (3*Pi^2)^(1/3) * opz_pow_n(z,1/3) * RS_FACTOR/rs:
nu := (rs, z) -> p_a_cam_omega/kF(rs, z):
(* Maple 2020 has a bug where series aren't computed to the order requested; this circumvents that *)
padding_order := 30:
(* Cap polynomial expansion to given order (throws out the padded terms, if any) *)
throw_out_large_n := proc(X,n) select(t -> abs(degree(t,{b}))<=n, X); end proc:
(* Function that makes f(a) smooth for a->infty *)
enforce_smooth_lr := proc(f, a, a_cutoff, expansion_order);
(* Calculate large-a expansion *)
f_large := a -> eval(throw_out_large_n(convert(series(f(b), b=infinity, expansion_order+padding_order), polynom), expansion_order), b=a):
(* Return the series expansion for large a; also remove any numerical overflows from the original branch *)
my_piecewise3(a >= a_cutoff, f_large(m_max(a, a_cutoff)), f(m_min(a, a_cutoff))):
end proc:
|