File: util.mpl

package info (click to toggle)
libxc 5.2.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 196,988 kB
  • sloc: ansic: 31,506; f90: 3,369; perl: 1,392; python: 966; makefile: 425; sh: 318
file content (190 lines) | stat: -rw-r--r-- 7,949 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
(*
 Copyright (C) 2017 M.A.L. Marques

 This Source Code Form is subject to the terms of the Mozilla Public
 License, v. 2.0. If a copy of the MPL was not distributed with this
 file, You can obtain one at http://mozilla.org/MPL/2.0/.
*)

# Minimum and maximum functions that I can differentiate

m_min := (x1, x2) -> my_piecewise3(x1 > x2, x2, x1):
m_max := (x1, x2) -> my_piecewise3(x1 > x2, x1, x2):
m_abs := (x)      -> my_piecewise3(x > 0, x, -x):

# Teach maple to differentiate piecewise functions

`diff/my_piecewise3` :=
    proc(c, x1, x2, x) my_piecewise3(c, diff(x1, x), diff(x2, x)) end proc:

`diff/my_piecewise5` :=
    proc(c1, x1, c2, x2, x3, x) my_piecewise5(c1, diff(x1, x), c2, diff(x2, x), diff(x3,x)) end proc:

# This is the derivative of xc_E1_scaled = -exp(x)*Ei(-x) = exp(x)E1(x)

`diff/xc_E1_scaled` :=
  proc(y, x) (xc_E1_scaled(y) - 1/y) * diff(y, x) end proc:

# The derivative of xc_erfcx = exp(x^2)*erfc(x) = 2*x*xc_erfcx(x) - 2/sqrt(Pi)
`diff/xc_erfcx` :=
  proc(y, x) (2*y*xc_erfcx(y) - 2/sqrt(Pi)) * diff(y, x) end proc:

# a series of useful definitions

M_C         := 137.0359996287515: (* speed of light *)

X2S         := 1/(2*(6*Pi^2)^(1/3)):
X2S_2D      := 1/(2*(4*Pi)^(1/2)):

X_FACTOR_C    := 3/8*(3/Pi)^(1/3)*4^(2/3):
X_FACTOR_2D_C := 8/(3*sqrt(Pi)):
K_FACTOR_C    := 3/10*(6*Pi^2)^(2/3):

MU_GE       := 10/81:
MU_PBE      := 0.06672455060314922*(Pi^2)/3:
KAPPA_PBE   := 0.8040:

# generic conversion functions

$ifdef xc_dimensions_1d
DIMENSIONS   := 1:
RS_FACTOR    := 1/2:
$elif xc_dimensions_2d
DIMENSIONS   := 2:
RS_FACTOR    := 1/sqrt(Pi):
LDA_X_FACTOR := -X_FACTOR_2D_C:
$else
DIMENSIONS   := 3:
RS_FACTOR    := (3/(4*Pi))^(1/3):
LDA_X_FACTOR := -X_FACTOR_C:
$endif

r_ws       := n  -> RS_FACTOR/n^(1/DIMENSIONS):
n_total    := rs -> (RS_FACTOR/rs)^DIMENSIONS:

n_spin     := (rs, z) -> simplify((1 + z)*n_total(rs)/2):
sigma_spin := (rs, z, xs) -> simplify(xs^2*n_spin(rs, z)^(8/3)):
t_total    := (z, ts0, ts1) ->
  (ts0*((1 + z)/2)^(5/3) + ts1*((1 - z)/2)^(5/3)):
u_total    := (z, us0, us1) -> t_total(z, us0, us1):

# useful formulas that enter several functionals follow

# von Weizsäcker term
t_vw := (z, xt, us0, us1) -> (xt^2 - u_total(z, us0, us1))/8:

# Screening for extreme values of zeta
z_thr := z -> my_piecewise5(
  1 + z <= p_a_zeta_threshold, p_a_zeta_threshold - 1,
  1 - z <= p_a_zeta_threshold, 1 - p_a_zeta_threshold,
  z):

opz_pow_n := (z, n) -> my_piecewise3(1 + z <= p_a_zeta_threshold, (p_a_zeta_threshold)^n, (1 + z)^n):

# See Eq. (9) of Perdew1992_13244
f_zeta    := z -> (opz_pow_n(z,4/3) + opz_pow_n(-z,4/3) - 2)/(2^(4/3) - 2):
f_zeta_2d := z -> 1/2*(opz_pow_n(z,3/2) + opz_pow_n(-z,3/2)):

# used in several correlation functionals
mphi := z -> (opz_pow_n(z,2/3) + opz_pow_n(-z,2/3))/2:
tt   := (rs, z, xt) -> xt/(4*2^(1/3)*mphi(z)*sqrt(rs)):

# in the paper it is beta_a = 0.066725
beta_Hu_Langreth := rs -> 0.066724550603149220*(1 + 0.1*rs)/(1 + 0.1778*rs):

# Generate exchange and kinetic functionals from the expression for the
# enhancement factor
lda_x_spin := (rs, z) -> simplify(LDA_X_FACTOR*opz_pow_n(z,1 + 1/DIMENSIONS)*2^(-1-1/DIMENSIONS)*(RS_FACTOR/rs)):
lda_k_spin := (rs, z) -> simplify(K_FACTOR_C*opz_pow_n(z,5/3)*2^(-5/3)*(RS_FACTOR/rs)^2):

# Screen out small densities as well as the zero component from fully spin polarized densities due to terms of the form (1+z)^{-n}
screen_dens := (rs, z) -> (n_spin(rs,  z) <= p_a_dens_threshold):

# For most functionals zeta screening occurs inside the funcitonal,
#  but for B88 and B94 correlation need to screen out also outside
screen_dens_zeta := (rs, z) -> screen_dens(rs, z) or (1 + z <= p_a_zeta_threshold):

# non-separable GGA exchange
gga_exchange_nsp := (func, rs, z, xs0, xs1) ->
  + my_piecewise3(screen_dens(rs,  z), 0, lda_x_spin(rs, z_thr( z))*func(rs, z_thr( z), xs0))
  + my_piecewise3(screen_dens(rs, -z), 0, lda_x_spin(rs, z_thr(-z))*func(rs, z_thr(-z), xs1)):
# GGA exchange
gga_exchange := (func, rs, z, xs0, xs1) ->
  + my_piecewise3(screen_dens(rs,  z), 0, lda_x_spin(rs, z_thr( z))*func(xs0))
  + my_piecewise3(screen_dens(rs, -z), 0, lda_x_spin(rs, z_thr(-z))*func(xs1)):
# GGA kinetic energy
gga_kinetic := (func, rs, z, xs0, xs1) ->
  + my_piecewise3(screen_dens(rs,  z), 0, lda_k_spin(rs, z_thr( z))*func(xs0))
  + my_piecewise3(screen_dens(rs, -z), 0, lda_k_spin(rs, z_thr(-z))*func(xs1)):

# non-separable meta-GGA exchange
mgga_exchange_nsp := (func, rs, z, xs0, xs1, u0, u1, t0, t1) ->
  + my_piecewise3(screen_dens(rs,  z), 0, lda_x_spin(rs, z_thr( z))*func(rs, z_thr( z), xs0, u0, t0))
  + my_piecewise3(screen_dens(rs, -z), 0, lda_x_spin(rs, z_thr(-z))*func(rs, z_thr(-z), xs1, u1, t1)):
# meta-GGA exchange
mgga_exchange := (func, rs, z, xs0, xs1, u0, u1, t0, t1) ->
  + my_piecewise3(screen_dens(rs,  z), 0, lda_x_spin(rs, z_thr( z))*func(xs0, u0, t0))
  + my_piecewise3(screen_dens(rs, -z), 0, lda_x_spin(rs, z_thr(-z))*func(xs1, u1, t1)):
# meta-GGA kinetic energy
mgga_kinetic := (func, rs, z, xs0, xs1, u0, u1) ->
  + my_piecewise3(screen_dens(rs,  z), 0, lda_k_spin(rs, z_thr( z))*func(xs0, u0))
  + my_piecewise3(screen_dens(rs, -z), 0, lda_k_spin(rs, z_thr(-z))*func(xs1, u1)):

# This is the Stoll decomposition in our language
lda_stoll_par  := (lda_func, rs, z) ->
  my_piecewise3(screen_dens_zeta(rs,  z), 0, opz_pow_n(z, 1)/2 * lda_func(rs*2^(1/3)*opz_pow_n(z, -1/3), 1)):

lda_stoll_perp := (lda_func, rs, z) ->
  + lda_func(rs, z)
  - lda_stoll_par(lda_func, rs,  z)
  - lda_stoll_par(lda_func, rs, -z):

gga_stoll_par  := (gga_func, rs, z, xs, spin) ->
  my_piecewise3(screen_dens_zeta(rs, z), 0,
    gga_func(rs*2^(1/3)*opz_pow_n(z,-1/3), spin, xs, xs*(1 + spin)/2, xs*(1 - spin)/2) * opz_pow_n(z,1)/2):

# Curvature of the Fermi hole (without the current term)
Fermi_D := (xs, ts) -> 1 - xs^2/(8*ts):

# correction to Fermi_D similar to the one found in
#  JCP 127, 214103 (2007); doi: http://dx.doi.org/10.1063/1.2800011
Fermi_D_corrected := (xs, ts) -> (1 - xs^2/(8*ts)) * (1 - exp(-4*ts^2/params_a_Fermi_D_cnst^2)):

# Becke function used in several correlation functionals
b88_R_F := (f_x, rs, z, xs) -> 1/(2*X_FACTOR_C*n_spin(rs, z)^(1/3)*f_x(xs)):
b88_zss := (css, f_x, rs, z, xs) -> 2*css*b88_R_F(f_x, rs, z, xs):
b88_zab := (cab, f_x, rs, z, xs0, xs1) -> cab*(
  + my_piecewise3(screen_dens(rs,  z), 0, b88_R_F(f_x, rs, z_thr( z), xs0))
  + my_piecewise3(screen_dens(rs, -z), 0, b88_R_F(f_x, rs, z_thr(-z), xs1))
  ):

# The meta-GGA version
b94_R_F := (f_x, rs, z, xs, us, ts) -> 1/(2*X_FACTOR_C*n_spin(rs, z)^(1/3)*f_x(xs,us,ts)):
b94_zss := (css, f_x, rs, z, xs, us, ts) -> 2*css*b94_R_F(f_x, rs, z, xs, us, ts):
b94_zab := (cab, f_x, rs, z, xs0, xs1, us0, us1, ts0, ts1) -> cab*(
  + my_piecewise3(screen_dens(rs,  z), 0, b94_R_F(f_x, rs, z_thr( z), xs0, us0, ts0))
  + my_piecewise3(screen_dens(rs, -z), 0, b94_R_F(f_x, rs, z_thr(-z), xs1, us1, ts1))
  ):

# Power series often used in mggas
mgga_w := t -> (K_FACTOR_C - t)/(K_FACTOR_C + t):
mgga_series_w := (a, n, t) -> add(a[i]*mgga_w(t)^(i-1), i=1..n):

# Used in screened functionals
kF := (rs, z) -> (3*Pi^2)^(1/3) * opz_pow_n(z,1/3) * RS_FACTOR/rs:
nu := (rs, z) -> p_a_cam_omega/kF(rs, z):


(* Maple 2020 has a bug where series aren't computed to the order requested; this circumvents that *)
padding_order := 30:

(* Cap polynomial expansion to given order (throws out the padded terms, if any) *)
throw_out_large_n := proc(X,n) select(t -> abs(degree(t,{b}))<=n, X); end proc:

(* Function that makes f(a) smooth for a->infty *)
enforce_smooth_lr := proc(f, a, a_cutoff, expansion_order);
  (* Calculate large-a expansion *)
  f_large := a -> eval(throw_out_large_n(convert(series(f(b), b=infinity, expansion_order+padding_order), polynom), expansion_order), b=a):
  (* Return the series expansion for large a; also remove any numerical overflows from the original branch  *)
  my_piecewise3(a >= a_cutoff, f_large(m_max(a, a_cutoff)), f(m_min(a, a_cutoff))):
end proc: