File: test_functional.py

package info (click to toggle)
libxc 5.2.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 196,988 kB
  • sloc: ansic: 31,506; f90: 3,369; perl: 1,392; python: 966; makefile: 425; sh: 318
file content (313 lines) | stat: -rw-r--r-- 10,502 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
"""
Tests the LibXCFunctional class.
"""

import pytest
import numpy as np
import ctypes
import pylibxc

compute_test_dim = 5

np.random.seed(0)


def _dict_array_comp(test, ref, keys):
    for key in keys:
        tmp = np.testing.assert_allclose(test[key], ref[key])
        # print(key, np.allclose(test[key], ref[key]), np.linalg.norm(test[key] - ref[key]))
    return True


_size_tuples = {"unpolarized": (1, 1, 1, 1), "polarized": (2, 3, 2, 2)}


def test_libxc_functional_build():

    pylibxc.LibXCFunctional(1, 1)
    pylibxc.LibXCFunctional(1, 2)

    pylibxc.LibXCFunctional("XC_LDA_C_VWN", "polarized")
    pylibxc.LibXCFunctional("lda_c_vwn", "unpolarized")

    # Check functional edge cases
    with pytest.raises(KeyError):
        pylibxc.LibXCFunctional("something", 1)

    with pytest.raises(KeyError):
        pylibxc.LibXCFunctional(5000, 1)

    # Check spin edge cases
    with pytest.raises(KeyError):
        pylibxc.LibXCFunctional("lda_c_vwn", 10)

    with pytest.raises(KeyError):
        pylibxc.LibXCFunctional("lda_c_vwn", "something")


def test_libxc_functional_info():

    func = pylibxc.LibXCFunctional(1, 1)
    assert func.get_number() == 1
    assert func.get_kind() == 0
    assert func.get_name() == "Slater exchange"
    assert func.get_family() == 1
    # XC_FLAGS_3D + [HAVE_EXC | HAVE_VXC | HAVE_FXC | HAVE_KXC]
    assert func.get_flags() in [129, 131, 135, 143, 159]
    assert len(func.get_bibtex()) == 2
    assert len(func.get_references()) == 2
    assert len(func.get_doi()) == 2

    func = pylibxc.LibXCFunctional("XC_HYB_MGGA_XC_WB97M_V", 1)
    assert func.get_number() == 531
    assert func.get_kind() == 2
    assert func.get_name() == "wB97M-V exchange-correlation functional"
    assert func.get_family() == 64
    # XC_FLAGS_3D + XC_FLAGS_HYB_CAM + XC_FLAGS_VV10 + [HAVE_EXC | HAVE_VXC | HAVE_FXC | HAVE_KXC]
    assert func.get_flags() in [1409, 1411, 1415, 1423, 1439]
    assert len(func.get_bibtex()) == 1
    assert len(func.get_references()) == 1
    assert len(func.get_doi()) == 1

def test_ext_params():

    func = pylibxc.LibXCFunctional(1, 1)
    assert 0 == len(func.get_ext_param_descriptions())
    assert 0 == len(func.get_ext_param_default_values())
    func.set_dens_threshold(1.e-16)
    func.set_dens_threshold(5)
    with pytest.raises(ValueError):
        func.set_ext_params([])

    func = pylibxc.LibXCFunctional("XC_HYB_GGA_XC_HSE06", 1)
    assert 3 == len(func.get_ext_param_descriptions())
    assert 3 == len(func.get_ext_param_default_values())
    assert all("param" in x for x in func.get_ext_param_descriptions())
    func.set_dens_threshold(1.e-16)
    func.set_dens_threshold(5)

    # Segfaults, need to check it out
    func.set_ext_params([5, 3, 3])

    with pytest.raises(ValueError):
        func.set_ext_params([5, 3])

    with pytest.raises(ValueError):
        func.set_dens_threshold(-1)


@pytest.mark.parametrize("polar", [("unpolarized"), ("polarized")])
def test_lda_compute(polar):

    # Build input
    ndim = _size_tuples[polar]
    inp = {}
    inp["rho"] = np.random.random((compute_test_dim * ndim[0]))

    func = pylibxc.LibXCFunctional("lda_c_vwn", polar)

    # Check capabilities
    do_l = func._have_lxc
    do_k = func._have_kxc
    do_f = func._have_fxc
    do_v = func._have_vxc
    do_e = func._have_exc

    # Compute
    ret_full = func.compute(inp, do_exc=do_e, do_vxc=do_v, do_fxc=do_f, do_kxc=do_k, do_lxc=do_l)
    ret_ev = func.compute(inp, do_exc=do_e, do_vxc=do_v, do_fxc=False, do_kxc=False, do_lxc=False)
    ret_e = func.compute(inp, do_exc=do_e, do_vxc=False, do_fxc=False, do_kxc=False, do_lxc=False)
    ret_v = func.compute(inp, do_exc=False, do_vxc=do_v, do_fxc=False, do_kxc=False, do_lxc=False)
    ret_f = func.compute(inp, do_exc=False, do_vxc=False, do_fxc=do_f, do_kxc=False, do_lxc=False)
    ret_k = func.compute(inp, do_exc=False, do_vxc=False, do_fxc=False, do_kxc=do_k, do_lxc=False)
    ret_l = func.compute(inp, do_exc=False, do_vxc=False, do_fxc=False, do_kxc=False, do_lxc=do_l)

    # Test consistency
    if do_e:
        assert ret_full["zk"].size == compute_test_dim
    if do_v:
        assert ret_full["vrho"].size == compute_test_dim * ndim[0]

    if do_e:
        assert np.allclose(ret_full["zk"], ret_ev["zk"])
    if do_v:
        assert np.allclose(ret_full["vrho"], ret_ev["vrho"])

    if do_e:
        assert np.allclose(ret_full["zk"], ret_e["zk"])
    if do_v:
        assert np.allclose(ret_full["vrho"], ret_v["vrho"])
    if do_f:
        assert np.allclose(ret_full["v2rho2"], ret_f["v2rho2"])
    if do_k:
        assert np.allclose(ret_full["v3rho3"], ret_k["v3rho3"])
    if do_l:
        assert np.allclose(ret_full["v4rho4"], ret_l["v4rho4"])


@pytest.mark.parametrize("polar", [("unpolarized"), ("polarized")])
def test_gga_compute(polar):

    # Build input
    ndim = _size_tuples[polar]
    inp = {}
    inp["rho"] = np.random.random((compute_test_dim * ndim[0]))
    inp["sigma"] = np.random.random((compute_test_dim * ndim[1]))

    # Compute
    func = pylibxc.LibXCFunctional("gga_c_pbe", polar)

    # Check capabilities
    do_l = func._have_lxc
    do_k = func._have_kxc
    do_f = func._have_fxc
    do_v = func._have_vxc
    do_e = func._have_exc

    # Compute
    ret_full = func.compute(inp, do_exc=do_e, do_vxc=do_v, do_fxc=do_f, do_kxc=do_k, do_lxc=do_l)
    ret_ev = func.compute(inp, do_exc=do_e, do_vxc=do_v, do_fxc=False, do_kxc=False, do_lxc=False)
    ret_e = func.compute(inp, do_exc=do_e, do_vxc=False, do_fxc=False, do_kxc=False, do_lxc=False)
    ret_v = func.compute(inp, do_exc=False, do_vxc=do_v, do_fxc=False, do_kxc=False, do_lxc=False)
    ret_f = func.compute(inp, do_exc=False, do_vxc=False, do_fxc=do_f, do_kxc=False, do_lxc=False)
    ret_k = func.compute(inp, do_exc=False, do_vxc=False, do_fxc=False, do_kxc=do_k, do_lxc=False)
    ret_l = func.compute(inp, do_exc=False, do_vxc=False, do_fxc=False, do_kxc=False, do_lxc=do_l)

    # Test consistency
    if do_e:
        assert ret_full["zk"].size == compute_test_dim
    if do_v:
        assert ret_full["vrho"].size == compute_test_dim * ndim[0]
        assert ret_full["vsigma"].size == compute_test_dim * ndim[1]

    if do_e and do_v:
        assert _dict_array_comp(ret_full, ret_ev, ["zk", "vrho", "vsigma"])

    if do_e:
        assert _dict_array_comp(ret_full, ret_e, ["zk"])
    if do_v:
        assert _dict_array_comp(ret_full, ret_v, ["vrho", "vsigma"])
    if do_f:
        assert _dict_array_comp(ret_full, ret_f, ["v2rho2", "v2rhosigma", "v2sigma2"])
    if do_k:
        assert _dict_array_comp(ret_full, ret_k, ["v3rho3", "v3rho2sigma", "v3rhosigma2", "v3sigma3"])
    if do_l:
        assert _dict_array_comp(ret_full, ret_l, ["v4rho4", "v4rho3sigma", "v4rho2sigma2", "v4rhosigma3", "v4sigma4"])


@pytest.mark.parametrize("polar", [("unpolarized"), ("polarized")])
def test_mgga_compute(polar):

    # Build input
    ndim = _size_tuples[polar]

    inp = {}
    inp["rho"] = np.random.random((compute_test_dim * ndim[0]))
    inp["sigma"] = np.random.random((compute_test_dim * ndim[1]))
    inp["tau"] = np.random.random((compute_test_dim * ndim[3]))

    # Compute
    func = pylibxc.LibXCFunctional("mgga_c_tpss", polar)

    # Test consistency
    ret_ev = func.compute(inp, do_exc=True, do_vxc=True)
    ret_e = func.compute(inp, do_exc=True, do_vxc=False)
    ret_v = func.compute(inp, do_exc=False, do_vxc=True)

    assert ret_ev["zk"].size == compute_test_dim
    assert ret_ev["vrho"].size == compute_test_dim * ndim[0]
    assert ret_ev["vsigma"].size == compute_test_dim * ndim[1]

    assert _dict_array_comp(ret_ev, ret_e, ["zk"])
    assert _dict_array_comp(ret_ev, ret_v, ["vrho", "vsigma", "vtau"])


@pytest.mark.parametrize("polar", [("unpolarized"), ("polarized")])
def test_mgga_lapl_compute(polar):

    # Build input
    ndim = _size_tuples[polar]

    inp = {}
    inp["rho"] = np.random.random((compute_test_dim * ndim[0]))
    inp["sigma"] = np.random.random((compute_test_dim * ndim[1]))
    inp["tau"] = np.random.random((compute_test_dim * ndim[3]))
    inp["lapl"] = np.random.random((compute_test_dim * ndim[3]))

    # Compute
    func = pylibxc.LibXCFunctional("mgga_x_br89", polar)

    # Test consistency
    ret_ev = func.compute(inp, do_exc=True, do_vxc=True)
    ret_e = func.compute(inp, do_exc=True, do_vxc=False)
    ret_v = func.compute(inp, do_exc=False, do_vxc=True)

    assert ret_ev["zk"].size == compute_test_dim
    assert ret_ev["vrho"].size == compute_test_dim * ndim[0]
    assert ret_ev["vsigma"].size == compute_test_dim * ndim[1]

    assert _dict_array_comp(ret_ev, ret_e, ["zk"])
    assert _dict_array_comp(ret_ev, ret_v, ["vrho", "vsigma", "vtau"])

    # Test exception
    del inp["lapl"]
    with pytest.raises(KeyError):
        func.compute(inp, do_exc=True, do_vxc=True)


@pytest.mark.parametrize("polar", [("unpolarized"), ("polarized")])
def test_deriv_flags(polar):
    func = pylibxc.LibXCFunctional("mgga_c_tpss", polar)

    ndim = _size_tuples[polar]
    inp = {}
    inp["rho"] = np.random.random((compute_test_dim * ndim[0]))
    inp["sigma"] = np.random.random((compute_test_dim * ndim[1]))
    inp["tau"] = np.random.random((compute_test_dim * ndim[3]))
    inp["lapl"] = np.random.random((compute_test_dim * ndim[3]))

    # disabled as mgga_c_tpss now has fxc
    # please fix this better!
    #with pytest.raises(ValueError):
    #    func.compute(inp, do_fxc=True)

def test_hyb_getters():

    func = pylibxc.LibXCFunctional("hyb_gga_xc_b3lyp", "unpolarized")
    assert pytest.approx(0.2) == func.get_hyb_exx_coef()

    with pytest.raises(ValueError):
        func.get_cam_coef()
    with pytest.raises(ValueError):
        func.get_vv10_coef()


def test_cam_getters():

    func = pylibxc.LibXCFunctional("hyb_gga_xc_cam_b3lyp", "unpolarized")

    with pytest.raises(ValueError):
        assert pytest.approx(0.65) == func.get_hyb_exx_coef()

    omega, alpha, beta = func.get_cam_coef()
    assert pytest.approx(0.33) == omega
    assert pytest.approx(0.65) == alpha
    assert pytest.approx(-0.46) == beta

    with pytest.raises(ValueError):
        func.get_vv10_coef()


def test_vv10_getters():

    func = pylibxc.LibXCFunctional("gga_xc_vv10", "unpolarized")

    b, C = func.get_vv10_coef()
    assert pytest.approx(5.9) == b
    assert pytest.approx(0.0093) == C

    with pytest.raises(ValueError):
        func.get_cam_coef()

    with pytest.raises(ValueError):
        func.get_hyb_exx_coef()