1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
#!/usr/bin/python
import xmlrpclib
import socket
import sys
import os
import time
import stat
ServerExec = 'perl /usr/local/bin/vulcan_server.pl'
PidDir = '/tmp'
PidPrefix = 'vulcan_'
PidSuffix = '.pid'
PortRange = range(13600,13800)
def get_next_port(port=None):
""" return next pid number and pidfile for an unused connection"""
def tryport(p,reuse=False):
pidfile = os.path.join(PidDir,"%s%i%s" % (PidPrefix,p, PidSuffix))
try:
mtime = os.stat(pidfile)[stat.ST_MTIME]
except OSError: # file does not exst -- use this PID
fx = open(pidfile,'w')
return (p,pidfile)
if reuse or (time.time() - mtime) > 1800: # reuse old connection
return (p,pidfile)
return (None,None)
# if an explicit port is requested, try that, even if we need to reuse one
# (this is useful for debugging)
if port is not None:
return tryport(port,reuse=True)
# if no port is specified, try the pool
for p in PortRange:
p,fpid = tryport(p)
if p is not None: return (p,fpid)
return (None,None) # pool exhausted
def purge_connections(stale_age=7200,verbose=True):
""" kill Vulcan Server processes and remove Pid files that are older than stale_age (in seconds)
relies on linux/bsd-like ps and kill system utilities.
"""
purgefile = '/tmp/vulcan_purge.dat'
pidcmd = "ps -eo pid,args | grep 'perl'| grep '%%i' > %s 2>&1" % purgefile
killcmd = "kill -9 %i"
if verbose:
print 'Current Active Vulcan Ports'
print 'Port Time since last use (sec)'
for fname in os.listdir(PidDir):
if fname.startswith(PidPrefix) and fname.endswith(PidSuffix):
modtime = os.stat(os.path.join(PidDir,fname))[stat.ST_MTIME]
try:
port = int(fname[len(PidPrefix):-4])
except:
if verbose:
print 'error getting port for file ', fname
continue
age = time.time()-modtime
if verbose:
print " %i %.2f" % (port, age)
if age > stale_age:
os.system(pidcmd % port)
time.sleep(1.0)
for i in open(purgefile).readlines():
try:
pid = int(i[:-1].strip().split()[0])
os.system(killcmd % pid)
os.unlink(os.path.join(PidDir,fname))
except:
if verbose:
print 'error with kill for pid/port ', pid, port
try:
os.unlink(purgefile)
except OSError:
pass
class VulcanClient:
def __init__(self,host='localhost',port=None,purge=False):
self.server = None
self.kws = {}
self.state_kws = {'element':None,'resource':None}
self.available = None
self.scattering = None
if purge: purge_connections(verbose=False)
self.port,self.pidfile = get_next_port(port=port)
if self.port is None:
raise IOError, 'No Ports available for VulcanServer'
self.connect(host=host)
def touch_pid(self):
"touch pidfile, setting its modified time to now"
if self.pidfile is not None:
try:
os.utime(self.pidfile,None)
except OSError:
pass
def connect(self,host='localhost',spawn=True):
"connect to a Vulcan Server, possibly spawning a new one."
self.host = str(host)
try:
self.server = xmlrpclib.Server("http://%s:%i" % (self.host,self.port))
self.rpcdata = self.server.available()
except socket.error:
print 'Starting Vulcan Server seems to not be running on port ', self.port
self.server = None
try:
os.system('%s -p %i &' % (ServerExec, self.port))
time.sleep(1.2)
self.server = xmlrpclib.Server("http://%s:%i" % (self.host,self.port))
self.rpcdata = self.server.available()
except:
print 'Cannot start Vulcan Server'
self.server = None
if self.server is not None:
self.available = self.server.available()
if 'None' in self.available: self.available.remove('None')
self.scattering = self.server.scattering()
if 'None' in self.scattering: self.scattering.remove('None')
def _prep(self,**kw):
" prepare arguments for XML-RPC call"
if self.server is None: self.connect()
def _kwargs(**kw): return kw
args = _kwargs(**kw)
for k,v in args.items():
if v is None: args.pop(k)
self.kws = args
# use 'element' and 'resource' as "state keywords":
# if explicitly set, use and save for next use.
# if not set, look up and use saved value.
for key in ('element','resource'):
if self.kws.has_key(key):
self.state_kws[key] = self.kws[key]
elif self.state_kws[key] not in (None,''):
self.kws[key] = self.state_kws[key]
# before returning, touch pid file, signaling that this
# port / pid are still in use
self.touch_pid()
return self.kws
def has(self,element=None, **kw):
"""return True if element is in the current resource
>>> x = VC.has(element='Mo', resource='McMaster')
"""
return (1 == self.server.has(self._prep(element=element,**kw)))
def weight(self,element=None, **kw):
"""return elements weight
>>>x = VC.weight(element='Mo')
"""
return self.server.weight(self._prep(element=element, **kw))
def density(self,element=None, **kw):
"""return elements density (most common form of pure element)
>>>x = VC.density(element='Mo')
"""
return self.server.density(self._prep(element=element, **kw))
def energy(self,element=None, **kw):
"""return energy in eV of an element's edge or emission line
>>>x = VC.energy(element='Cu', edge='K')
>>>x = VC.energy(element='Cu', line='Kalpha1')
Edges are strings such as 'K', 'L3', 'M5', etc
Lines can use Siegbahn ('Lbeta3'), shortened Siegbahn ('Lb3')
or IUPAC ('L1-M3') notation.
"""
return self.server.energy(self._prep(element=element, **kw))
def next_energy(self,element=None,edge=None,atoms=None,**kw):
""" Given an element's edge and a list of atoms, returns the next highest
edge that will be seen for that list of atoms.
return (element, edge, energy) for the next edge (energy in eV)
"""
if atoms is None or edge is None:
print 'need an edge and list of atoms'
self._prep(element=element,edge=edge,atoms= tuple(atoms), **kw)
return tuple(self.server.next_energy(self.kws))
def conversion(self,**kw):
"""Return the coeffient for converting cross-sections between barns to
grams per square centimeter"""
return self.server.conversion(self._prep(**kw))
def siegbahn(self,**kw):
"""Return a line symbol in Siegbahn form.
Input can be Siegbahn (Lbeta3), shortened Siegbahn (Lb3), or IUPAC (L1-M3).
>>> print VC.siegbahn(line='lb3')
Lbeta3
"""
return self.server.siegbahn(self._prep(**kw))
def iupac(self,**kw):
"""Return a line symbol in IUPAC form.
Input can be Siegbahn (Lbeta3), shortened Siegbahn (Lb3), or IUPAC (L1-M3).
>>> print VC.iupac(line='lb3')
L1-M3
"""
return self.server.iupac(self._prep(**kw))
def gamma(self,element=None, edge=None, **kw):
"""Return an approximation of the core-hole lifetime for an element and edge.
Data comes from K. Rahkonen and K. Krause, Atomic Data and Nuclear Data
Tables, Vol 14, Number 2, 1974.
For O and P edges a value of 0.1 is returned
Returns 0 for non-interpretable input
"""
if edge is None: return None
return self.server.gamma(self._prep(element=element, edge=edge, **kw))
def fluor_yield(self,element=None, edge=None, **kw):
"""Return the fluorescence yield for an atomic symbol and edge
fyield = VC.fluor_yield('Cu', edge='K')
The value returned is the probability of an fluorescent x-ray being emitted
for an absorption event.
Data comes from M. O. Krause, J. Phys. Chem. Ref. Data 8, 307 (1979)
Returns -1 for non-interpretable input
"""
if edge is None: return None
return self.server.fluor_yield(self._prep(element=element, edge=edge, **kw))
def edge_jump(self,element=None, edge=None, **kw):
"""Return edge jump ratio for an atomic symbol and edge
jump = VC.edge_jump('Cu', edge='K')
The value returned is the ratio of the above-edge absorption coefficient
to the below-edge coefficient
"""
if edge is None: return None
return self.server.edge_jump(self._prep(element=element, edge=edge, **kw))
def intensity(self,element=None, line=None, **kw):
"""Return the intensity of the given emission line. The
intensities of all lines associated with a common core state sum to one.
For example, the intensities of the 3 Kalpha and 5 Kbeta lines sum to one.
"""
if line is None:
print 'need an line'
return self.server.intensity(self._prep(element=element, line=line, **kw))
def xsec(self,**kw):
"total cross-section"
return self.server.xsec(self._prep(**kw))
def photo(self,**kw):
"photo cross-section"
return self.server.photo(self._prep(**kw))
def coherent(self,**kw):
"coherent cross-section"
return self.server.coherent(self._prep(**kw))
def incoherent(self,**kw):
"incoherent cross-section"
return self.server.incoherent(self._prep(**kw))
def f1(self,resource='CL',**kw):
"f' from CL "
out =self.server.f1(self._prep(resource='CL',**kw))
self.state_kws['resource'] = None
return out
def f2(self,resource='CL',**kw):
"f'' from CL "
out =self.server.f2(self._prep(resource='CL',**kw))
self.state_kws['resource'] = None
return out
# $daemon -> dispatch_to(qw(has weight density conversion gamma
# siegbahn iupac intensity
# energy next_energy
# xsec photo coherent incoherent f1 f2));
# print s.next_energy({'element': "Ti",'edge': "K",'atoms':['ba','ti','o']})
if __name__ == '__main__':
vc = VulcanClient(port=13702)
print vc.available
vc.has(element='Cu')
print vc.weight()
print vc.energy(edge='k')
print vc.energy(line='kalpha1')
print vc.energy(edge='k')
print vc.gamma(edge='k')
vc.has(element='Mo')
print vc.weight()
print vc.energy(edge='k')
print vc.xsec(energies=[19994,20006])
#
#
# kws ={'element':"Cu", 'edge':'k'}
#
# print s.has(element='Cu',edge='K')
#
# print s.weight(kws), s.density(kws)
#
# print s.energy({'element':'Cu', 'edge':'k'})
# print s.energy({'element':'Cu', 'line':'kalpha1'})
#
# print "Core-hole lifetime of %(element)s K edge = " % kws,
#
# print s.gamma(kws)
#
# print s.next_energy({'element': "Ti",'edge': "K",'atoms':['ba','ti','o']})
#
# print "elem Kalpha1 line = ", $rpcdata->result, $/;
# $rpcdata = $client -> iupac({line=>"lbeta3"});
# print "IUPAC notation for Lbeta3 = ", $rpcdata->result, $/;
#
#
# print $/;
# print "Elam total cross sections at 8700, 8800, 8900, 9000, 9100, 9200:\n";
# $rpcdata = $client -> xsec({element => $elem,
# energies => [8700, 8800, 8900, 9000, 9100, 9200]}
# );
# print join(" ",@{ $rpcdata->result }), $/;
#
# my $sum = 0;
# $rpcdata = $client -> intensity({element => $elem,
# line => "kalpha1"});
# print "$elem Kalpha1 intensity = ", $rpcdata->result, $/;
# $sum += $rpcdata->result;
# $rpcdata = $client -> intensity({element => $elem,
# line => "kalpha2"});
# print "$elem Kalpha2 intensity = ", $rpcdata->result, $/;
# $sum += $rpcdata->result;
# $rpcdata = $client -> intensity({element => $elem,
# line => "kalpha3"});
# print "$elem Kalpha3 intensity = ", $rpcdata->result, $/;
# $sum += $rpcdata->result;
# $rpcdata = $client -> intensity({element => $elem,
# line => "kb1"});
# print "$elem Kbeta1 intensity = ", $rpcdata->result, $/;
# $sum += $rpcdata->result;
# $rpcdata = $client -> intensity({element => $elem,
# line => "kb2"});
# print "$elem Kbeta2 intensity = ", $rpcdata->result, $/;
# $sum += $rpcdata->result;
# $rpcdata = $client -> intensity({element => $elem,
# line => "kb3"});
# print "$elem Kbeta3 intensity = ", $rpcdata->result, $/;
# $sum += $rpcdata->result;
# $rpcdata = $client -> intensity({element => $elem,
# line => "kb4"});
# print "$elem Kbeta4 intensity = ", $rpcdata->result, $/;
# $sum += $rpcdata->result;
# $rpcdata = $client -> intensity({element => $elem,
# line => "kb5"});
# print "$elem Kbeta5 intensity = ", $rpcdata->result, $/;
# $sum += $rpcdata->result;
# print $sum;
#
# $rpcdata = $client -> incoherent({element => $elem,
# energies => [8700, 8800, 8900, 9000, 9100, 9200],
# resource => "McMaster",
# } );
#
# print $/;
# print "McMaster incoherent cross sections at 8700, 8800, 8900, 9000, 9100, 9200:\n";
# print join(" ",@{ $rpcdata->result }), $/;
#
# $rpcdata = $client -> intensity({element => $elem,
# line => "kalpha1",
# resource => "McMaster"});
# print "$elem Kalpha1 intensity = ", $rpcdata->result, $/;
# $rpcdata = $client -> intensity({element => $elem,
# line => "kalpha2",
# resource => "McMaster"});
# print "$elem Kalpha2 intensity = ", $rpcdata->result, $/;
#
#
#
# $rpcdata = $client -> energy({element => "Ti",
# edge => "k"});
# print "\nTi K edge = ", $rpcdata->result, $/;
# print "next energy = ", join(" ", @{$rpcdata->result}), $/;
|