1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
/******************************************************************************
* Copyright (c) Intel Corporation - All rights reserved. *
* This file is part of the LIBXSMM library. *
* *
* For information on the license, see the LICENSE file. *
* Further information: https://github.com/hfp/libxsmm/ *
* SPDX-License-Identifier: BSD-3-Clause *
******************************************************************************/
/* Hans Pabst (Intel Corp.)
******************************************************************************/
#if !defined(INCLUDE_LIBXSMM_LAST)
# include <libxsmm.h>
# include <libxsmm_intrinsics_x86.h>
#endif
#include <math.h>
#if defined(INCLUDE_LIBXSMM_LAST)
# include <libxsmm.h>
# include <libxsmm_intrinsics_x86.h>
#endif
#define N 1000000
LIBXSMM_INLINE unsigned int ref_isqrt_u32(unsigned int u32)
{
const unsigned int r = (unsigned int)(sqrt((double)u32) + 0.5);
return ((double)r * r) <= u32 ? r : (r - 1);
}
LIBXSMM_INLINE unsigned int ref_isqrt_u64(unsigned long long u64)
{
#if defined(__STDC_VERSION__) && (199901L <= __STDC_VERSION__) /*C99*/
const unsigned long long r = (unsigned long long)(sqrtl((long double)u64) + 0.5);
#else
const unsigned long long r = (unsigned long long)(sqrt((double)u64) + 0.5);
#endif
return (unsigned int)(((long double)r * r) <= u64 ? r : (r - 1));
}
LIBXSMM_INLINE unsigned int ref_icbrt_u32(unsigned int u32)
{
const unsigned int r = (unsigned int)(pow((double)u32, 1.0 / 3.0) + 0.5);
return ((double)r * r * r) <= u32 ? r : (r - 1);
}
LIBXSMM_INLINE unsigned int ref_icbrt_u64(unsigned long long u64)
{
#if defined(__STDC_VERSION__) && (199901L <= __STDC_VERSION__) /*C99*/
const unsigned long long r = (unsigned long long)(powl((long double)u64, 1.0 / 3.0) + 0.5);
#else
const unsigned long long r = (unsigned long long)(pow((double)u64, 1.0 / 3.0) + 0.5);
#endif
return (unsigned int)(((long double)r * r * r) <= u64 ? r : (r - 1));
}
LIBXSMM_INLINE unsigned int ref_ilog2_u32(unsigned int u32)
{
return (unsigned int)ceil(LIBXSMM_LOG2(u32));
}
int main(/*int argc, char* argv[]*/)
{
const unsigned long long scale64 = ((unsigned long long)-1) / (RAND_MAX) - 1;
const unsigned int scale32 = ((unsigned int)-1) / (RAND_MAX) - 1;
int warn_dsqrt = 0, warn_ssqrt = 0, i;
for (i = 0; i < 256; ++i) {
const float a = libxsmm_sexp2_u8((unsigned char)i);
const float b = LIBXSMM_EXP2F((float)i);
if (LIBXSMM_NEQ(a, b)) exit(EXIT_FAILURE);
}
for (i = -128; i < 127; ++i) {
const float a = libxsmm_sexp2_i8((signed char)i);
const float b = LIBXSMM_EXP2F((float)i);
if (LIBXSMM_NEQ(a, b)) exit(EXIT_FAILURE);
}
for (i = 0; i < (N); ++i) {
const int r1 = (0 != i ? rand() : 0), r2 = (1 < i ? rand() : 0);
const double rd = 2.0 * (r1 * (r2 - RAND_MAX / 2)) / RAND_MAX;
const unsigned long long r64 = scale64 * r1;
const unsigned int r32 = scale32 * r1;
double d1, d2, e1, e2, e3;
unsigned int a, b;
if (LIBXSMM_NEQ(LIBXSMM_ROUND((double)r1), LIBXSMM_ROUNDX(double, (double)r1))) exit(EXIT_FAILURE);
if (LIBXSMM_NEQ(LIBXSMM_ROUND((double)r2), LIBXSMM_ROUNDX(double, (double)r2))) exit(EXIT_FAILURE);
if (LIBXSMM_NEQ(LIBXSMM_ROUND((double)rd), LIBXSMM_ROUNDX(double, (double)rd))) exit(EXIT_FAILURE);
if (LIBXSMM_NEQ(LIBXSMM_ROUNDF((float)r1), LIBXSMM_ROUNDX(float, (float)r1))) exit(EXIT_FAILURE);
if (LIBXSMM_NEQ(LIBXSMM_ROUNDF((float)r2), LIBXSMM_ROUNDX(float, (float)r2))) exit(EXIT_FAILURE);
if (LIBXSMM_NEQ(LIBXSMM_ROUNDF((float)rd), LIBXSMM_ROUNDX(float, (float)rd))) exit(EXIT_FAILURE);
d1 = libxsmm_sexp2((float)rd);
d2 = LIBXSMM_EXP2F((float)rd);
e1 = fabs(d1 - d2); e2 = fabs(d2);
e3 = 0 < e2 ? (e1 / e2) : 0.0;
if (1E-4 < LIBXSMM_MIN(e1, e3)) exit(EXIT_FAILURE);
a = libxsmm_isqrt_u32(r32);
b = ref_isqrt_u32(r32);
if (a != b) exit(EXIT_FAILURE);
a = libxsmm_isqrt_u64(r64);
b = ref_isqrt_u64(r64);
if (a != b) exit(EXIT_FAILURE);
d1 = libxsmm_ssqrt((float)fabs(rd));
e1 = fabs(d1 * d1 - fabs(rd));
d2 = LIBXSMM_SQRTF((float)fabs(rd));
e2 = fabs(d2 * d2 - fabs(rd));
if (e2 < e1) {
e3 = 0 < e2 ? (e1 / e2) : 0.f;
if (1E-2 > LIBXSMM_MIN(fabs(e1 - e2), e3)) {
++warn_ssqrt;
}
else {
exit(EXIT_FAILURE);
}
}
d1 = libxsmm_dsqrt(fabs(rd));
e1 = fabs(d1 * d1 - fabs(rd));
d2 = sqrt(fabs(rd));
e2 = fabs(d2 * d2 - fabs(rd));
if (e2 < e1) {
e3 = 0 < e2 ? (e1 / e2) : 0.f;
if (1E-11 > LIBXSMM_MIN(fabs(e1 - e2), e3)) {
++warn_dsqrt;
}
else {
exit(EXIT_FAILURE);
}
}
a = libxsmm_icbrt_u32(r32);
b = ref_icbrt_u32(r32);
if (a != b) exit(EXIT_FAILURE);
a = libxsmm_icbrt_u64(r64);
b = ref_icbrt_u64(r64);
if (a != b) exit(EXIT_FAILURE);
a = LIBXSMM_INTRINSICS_BITSCANFWD32(r32);
b = LIBXSMM_INTRINSICS_BITSCANFWD32_SW(r32);
if (a != b) exit(EXIT_FAILURE);
a = LIBXSMM_INTRINSICS_BITSCANBWD32(r32);
b = LIBXSMM_INTRINSICS_BITSCANBWD32_SW(r32);
if (a != b) exit(EXIT_FAILURE);
a = LIBXSMM_INTRINSICS_BITSCANFWD64(r64);
b = LIBXSMM_INTRINSICS_BITSCANFWD64_SW(r64);
if (a != b) exit(EXIT_FAILURE);
a = LIBXSMM_INTRINSICS_BITSCANBWD64(r64);
b = LIBXSMM_INTRINSICS_BITSCANBWD64_SW(r64);
if (a != b) exit(EXIT_FAILURE);
a = LIBXSMM_ILOG2(i);
b = ref_ilog2_u32(i);
if (0 != i && a != b) exit(EXIT_FAILURE);
a = LIBXSMM_ILOG2(r32);
b = ref_ilog2_u32(r32);
if (0 != r32 && a != b) exit(EXIT_FAILURE);
a = LIBXSMM_ISQRT2(i);
b = libxsmm_isqrt_u32(i);
if (a < LIBXSMM_DELTA(a, b)) exit(EXIT_FAILURE);
a = LIBXSMM_ISQRT2(r32);
b = libxsmm_isqrt_u32(r32);
if (a < LIBXSMM_DELTA(a, b)) exit(EXIT_FAILURE);
a = LIBXSMM_ISQRT2(r64);
b = libxsmm_isqrt_u64(r64);
if (0 != a/*u32-overflow*/ && a < LIBXSMM_DELTA(a, b)) exit(EXIT_FAILURE);
}
{ /* further check LIBXSMM_INTRINSICS_BITSCANBWD32 */
const int npot[] = { 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 65536 };
const int n = sizeof(npot) / sizeof(*npot);
for (i = 0; i < n; ++i) {
const int numpot = npot[i];
const int nbits = LIBXSMM_INTRINSICS_BITSCANBWD32(numpot);
const int num = nbits < numpot ? (1 << nbits) : nbits;
if (numpot != num) {
exit(EXIT_FAILURE);
}
}
}
{ /* bit operations: specific tests */
unsigned int a, b;
a = LIBXSMM_INTRINSICS_BITSCANFWD64(0x2aaaab69ede0);
b = LIBXSMM_INTRINSICS_BITSCANFWD64_SW(0x2aaaab69ede0);
if (a != b) exit(EXIT_FAILURE);
}
if (0 < warn_ssqrt || 0 < warn_dsqrt) {
fprintf(stderr, "missed bitwise exact result in %.0f%% of the cases!\n", 100.0 * LIBXSMM_MAX(warn_ssqrt, warn_dsqrt) / N);
}
{ /* check LIBXSMM_UP2POT and LIBXSMM_LO2POT */
const size_t a[] = { 0, 1, 10, 100, 127, 128, 129 };
const size_t b[] = { 0, 1, 16, 128, 128, 128, 256 };
const size_t c[] = { 0, 1, 8, 64, 64, 128, 128 };
const int n = sizeof(a) / sizeof(*a);
for (i = 0; i < n; ++i) {
if (LIBXSMM_UP2POT(a[i]) != b[i]) exit(EXIT_FAILURE);
if (LIBXSMM_LO2POT(a[i]) != c[i]) exit(EXIT_FAILURE);
}
}
{ /* check LIBXSMM_UPDIV, LIBXSMM_UP and LIBXSMM_UP2 */
const int ai[] = { 0, 1, 3, 5, 127, 3000 };
const int ao[] = { 0, 1, 1, 1, 19, 429 };
const int bi[] = { 0, 1, 3, 5, 127, 3000 };
const int bo[] = { 0, 7, 7, 7, 133, 3003 };
const int ci[] = { 0, 1, 3, 5, 127, 3000 };
const int co[] = { 0, 8, 8, 8, 128, 3000 };
const int n = sizeof(ai) / sizeof(*ai);
for (i = 0; i < n; ++i) {
if (LIBXSMM_UPDIV(ai[i], 7) != ao[i]) exit(EXIT_FAILURE);
if (LIBXSMM_UP( bi[i], 7) != bo[i]) exit(EXIT_FAILURE);
if (LIBXSMM_UP2( ci[i], 8) != co[i]) exit(EXIT_FAILURE);
}
}
{ /* check GCD */
const size_t a[] = { 0, 1, 0, 100, 10 };
const size_t b[] = { 0, 0, 1, 10, 100 };
const size_t c[] = { 1, 1, 1, 10, 10 };
const int n = sizeof(a) / sizeof(*a);
for (i = 0; i < n; ++i) {
if (libxsmm_gcd(a[i], b[i]) != c[i]) exit(EXIT_FAILURE);
}
}
{ /* check prime factorization */
const unsigned int test[] = { 0, 1, 2, 3, 5, 7, 12, 13, 24, 32, 2057, 120, 14, 997, 65519u * 65521u };
const int n = sizeof(test) / sizeof(*test);
unsigned int fact[32];
for (i = 0; i < n; ++i) {
const int np = libxsmm_primes_u32(test[i], fact);
int j; for (j = 1; j < np; ++j) fact[0] *= fact[j];
if (0 < np && fact[0] != test[i]) {
exit(EXIT_FAILURE);
}
}
}
{ /* check shuffle routine */
const unsigned int test[] = { 0, 1, 2, 3, 5, 7, 12, 13, 24, 32, 2057, 120, 14, 997 };
const int n = sizeof(test) / sizeof(*test);
for (i = 0; i < n; ++i) {
const size_t coprime = libxsmm_shuffle(test[i]);
const unsigned int gcd = (unsigned int)libxsmm_gcd(coprime, test[i]);
if ((0 != coprime || 1 < test[i]) && (test[i] <= coprime || 1 != gcd)) {
exit(EXIT_FAILURE);
}
}
if (libxsmm_shuffle(65423) != 32711) exit(EXIT_FAILURE);
if (libxsmm_shuffle(1000) != 499) exit(EXIT_FAILURE);
if (libxsmm_shuffle(997) != 498) exit(EXIT_FAILURE);
if (libxsmm_shuffle(24) != 11) exit(EXIT_FAILURE);
if (libxsmm_shuffle(5) != 2) exit(EXIT_FAILURE);
}
/* find upper limited product */
if (libxsmm_product_limit(12 * 5 * 7 * 11 * 13 * 17, 231, 0) != (3 * 7 * 11)) exit(EXIT_FAILURE);
if (libxsmm_product_limit(12 * 5 * 7, 32, 0) != (2 * 3 * 5)) exit(EXIT_FAILURE);
if (libxsmm_product_limit(12 * 13, 13, 0) != 13) exit(EXIT_FAILURE);
if (libxsmm_product_limit(12, 6, 0) != 6) exit(EXIT_FAILURE);
if (libxsmm_product_limit(0, 48, 0) != 0) exit(EXIT_FAILURE);
if (libxsmm_product_limit(0, 1, 0) != 0) exit(EXIT_FAILURE);
if (libxsmm_product_limit(0, 0, 0) != 0) exit(EXIT_FAILURE);
if (libxsmm_product_limit(1, 0, 0) != 0) exit(EXIT_FAILURE);
/* find lower limited product */
if (libxsmm_product_limit(12 * 5 * 7 * 11 * 13 * 17, 231, 1) != (3 * 7 * 11)) exit(EXIT_FAILURE);
if (libxsmm_product_limit(12 * 5 * 7, 36, 1) != (2 * 5 * 7)) exit(EXIT_FAILURE);
if (libxsmm_product_limit(12 * 13, 13, 1) != 13) exit(EXIT_FAILURE);
if (libxsmm_product_limit(320, 300, 1) != 320) exit(EXIT_FAILURE);
if (libxsmm_product_limit(320, 65, 1) != 80) exit(EXIT_FAILURE);
if (libxsmm_product_limit(320, 33, 1) != 64) exit(EXIT_FAILURE);
if (libxsmm_product_limit(1000, 6, 1) != 10) exit(EXIT_FAILURE);
if (libxsmm_product_limit(1000, 9, 1) != 10) exit(EXIT_FAILURE);
if (libxsmm_product_limit(12, 7, 1) != 12) exit(EXIT_FAILURE);
if (libxsmm_product_limit(5, 2, 1) != 5) exit(EXIT_FAILURE);
if (libxsmm_product_limit(5, 2, 0) != 1) exit(EXIT_FAILURE);
if (libxsmm_product_limit(0, 1, 1) != 0) exit(EXIT_FAILURE);
if (libxsmm_product_limit(0, 0, 1) != 0) exit(EXIT_FAILURE);
if (libxsmm_product_limit(1, 0, 1) != 0) exit(EXIT_FAILURE);
if (libxsmm_isqrt2_u32(1024) * 32 != 1024) exit(EXIT_FAILURE);
if (libxsmm_isqrt2_u32(1981) * 283 != 1981) exit(EXIT_FAILURE);
if (libxsmm_isqrt2_u32(2507) * 109 != 2507) exit(EXIT_FAILURE);
if (libxsmm_isqrt2_u32(1975) * 79 != 1975) exit(EXIT_FAILURE);
return EXIT_SUCCESS;
}
|