1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
|
/*
* xtrxdsp template optimization functions file
* Copyright (c) 2017 Sergey Kostanbaev <sergey.kostanbaev@fairwaves.co>
* For more information, please visit: http://xtrx.io
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xtrxdsp.h"
/* This file should not be complied manually */
#define SCALE16 (1.0f/32768)
#define SCALE8 (1.0f/128)
#define SCALE2(x) ((x)/65536)
#define UNALIGN_IQ_BUFFER
#ifdef UNALIGN_STORE
#define _MM_STOREX_PS _mm_storeu_ps
#define _MM256_STOREX_PS _mm256_storeu_ps
#else
#define _MM_STOREX_PS _mm_store_ps
#define _MM256_STOREX_PS _mm256_store_ps
#endif
/* hints for compiler */
#define likely(x) __builtin_expect((x),1)
#define unlikely(x) __builtin_expect((x),0)
#ifdef XTRXDSP_TEMPLATE_IQ16_SC32
static inline
void xtrxdsp_iq16_sc32_template(const int16_t *__restrict iq,
float *__restrict out,
float scale,
size_t bytes)
{
size_t i = 0;
const uint64_t *ld = (const uint64_t *)iq;
for (; i < bytes - (bytes % 8); i += 8) {
uint64_t v = *(ld++);
float a = (int16_t)(v);
float b = (int16_t)(v>>16);
float c = (int16_t)(v>>32);
float d = (int16_t)(v>>48);
*(out++) = a * scale;
*(out++) = b * scale;
*(out++) = c * scale;
*(out++) = d * scale;
}
const int16_t *ldw = (const int16_t *)ld;
for (;i < bytes; i += 2) {
*(out++) = *(ldw++) * scale;
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_IQ16_SC32I
static inline
void xtrxdsp_iq16_sc32i_template(const int16_t *__restrict iq,
float *__restrict outa,
float *__restrict outb,
float scale,
size_t bytes)
{
size_t i = 0;
const uint64_t *ld = (const uint64_t *)iq;
for (; i < bytes - (bytes % 8); i += 8) {
uint64_t v = *(ld++);
float a = (int16_t)(v);
float b = (int16_t)(v>>16);
float c = (int16_t)(v>>32);
float d = (int16_t)(v>>48);
*(outa++) = a * scale;
*(outb++) = b * scale;
*(outa++) = c * scale;
*(outb++) = d * scale;
}
const int16_t *ldw = (const int16_t *)ld;
for (;i < bytes; i += 4) {
*(outa++) = *(ldw++) * scale;
if (i == bytes)
break;
*(outb++) = *(ldw++) * scale;
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_IQ16_IC16I
static inline
void xtrxdsp_iq16_ic16i_template(const int16_t *__restrict iq,
int16_t *__restrict outa,
int16_t *__restrict outb,
size_t bytes)
{
for (; bytes > 3; bytes -= 4) {
*(outa++) = *(iq++);
*(outb++) = *(iq++);
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_IQ12_SC32
static inline
uint64_t xtrxdsp_iq12_sc32_template(const void *__restrict iq,
float *__restrict out,
size_t inbytes,
uint64_t prevstate)
{
const uint8_t *ld = (const uint8_t *)iq;
size_t i = 0;
uint8_t v0, v1, v2;
float a, b;
unsigned q;
/* memory stream: MSB...LSB
* 0x00 f0[7:0]
* 0x01 {f1[3:0],f0[11:8]}
* 0x02 f1[11:4]
* .....
*/
/* v2 v1 v0
* +-----+-----+-----+
* | 8 | 8 | 8 |
* +-----+-----+-----+
* | 12 | 12 |
* +-----+-----+-----+
*
* +-----+-----+
* as = |v1| v0 |00|
* +-----+-----+
* bs = | v2 |v1|00|
* +-----+-----+
*/
switch (prevstate & 0xf) {
case 0:
v0 = *(ld++);
v1 = *(ld++);
v2 = *(ld++);
i += 3;
case 1:
v0 = (prevstate >> 8) & 0xff;
v1 = (prevstate >> 8) & 0xff;
v2 = *(ld++);
i++;
break;
case 2:
v0 = (prevstate >> 8) & 0xff;
v1 = *(ld++);
v2 = *(ld++);
i += 2;
break;
default:
return -1;
}
a = (int16_t) (((uint16_t)v0 << 4) | ((uint16_t)v1 << 12));
b = (int16_t) (((uint16_t)v2 << 8) | (v1 & 0xf0));
*(out++) = a * SCALE16;
*(out++) = b * SCALE16;
for (; i < inbytes - (inbytes % 3); i += 3) {
v0 = *(ld++);
v1 = *(ld++);
v2 = *(ld++);
a = (int16_t) (((uint16_t)v0 << 4) | ((uint16_t)v1 << 12));
b = (int16_t) (((uint16_t)v2 << 8) | (v1 & 0xf0));
*(out++) = a * SCALE16;
*(out++) = b * SCALE16;
}
switch (inbytes % 3) {
default:
return 0;
case 1:
return 1 | ((unsigned)(*ld) << 8);
case 2:
q = (*ld++);
return (2 | (q << 8)) | ((unsigned)(*ld) << 16);
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_IQ12_SC32I
static inline
uint64_t xtrxdsp_iq12_sc32i_template(const void *__restrict iq,
float *__restrict outa,
float *__restrict outb,
size_t inbytes,
uint64_t prevstate)
{
const uint8_t *ld = (const uint8_t *)iq;
size_t i = 0;
uint8_t v0, v1, v2;
float a, b;
for (; i < inbytes - (inbytes % 3); i += 3) {
v0 = *(ld++);
v1 = *(ld++);
v2 = *(ld++);
a = (int16_t) (((uint16_t)v0 << 4) | ((uint16_t)v1 << 12));
b = (int16_t) (((uint16_t)v2 << 8) | (v1 & 0xf0));
*(outa++) = a * SCALE16;
*(outb++) = b * SCALE16;
}
uint64_t res = inbytes % 3;
for (; i < inbytes; ++i) {
res <<= 8;
res |= *(ld++);
}
return res;
}
#endif
#ifdef XTRXDSP_TEMPLATE_IQ8_SC32
static inline
void xtrxdsp_iq8_sc32_template(const int8_t *__restrict iq,
float *__restrict out,
size_t bytes)
{
size_t i = 0;
const uint32_t *ld = (const uint32_t *)iq;
for (; i < bytes - (bytes % 4); i += 4) {
uint32_t v = *(ld++);
float a = (int8_t)(v);
float b = (int8_t)(v>>8);
float c = (int8_t)(v>>16);
float d = (int8_t)(v>>24);
*(out++) = a * SCALE8;
*(out++) = b * SCALE8;
*(out++) = c * SCALE8;
*(out++) = d * SCALE8;
}
const int8_t *ldb = (const int8_t *)ld;
for (;i < bytes; i +=2 ) {
*(out++) = *(ldb++) * SCALE8;
*(out++) = *(ldb++) * SCALE8;
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_IQ8_IC16
static inline
void xtrxdsp_iq8_ic16_template(const int8_t *__restrict iq,
int16_t *__restrict out,
size_t bytes)
{
for (; bytes > 0; bytes --) {
*(out++) = *(iq++) << 8;
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_IQ8_SC32I
static inline
void xtrxdsp_iq8_sc32i_template(const int8_t *__restrict iq,
float *__restrict outa,
float *__restrict outb,
size_t bytes)
{
size_t i = 0;
const uint32_t *ld = (const uint32_t *)iq;
for (; i < bytes - (bytes % 4); i += 4) {
uint32_t v = *(ld++);
float a = (int8_t)(v);
float b = (int8_t)(v>>8);
float c = (int8_t)(v>>16);
float d = (int8_t)(v>>24);
*(outa++) = a * SCALE8;
*(outb++) = b * SCALE8;
*(outa++) = c * SCALE8;
*(outb++) = d * SCALE8;
}
const int8_t *ldb = (const int8_t *)ld;
for (;i < bytes; i +=2 ) {
*(outa++) = *(ldb++) * SCALE8;
*(outb++) = *(ldb++) * SCALE8;
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_IQ8_IC16I
static inline
void xtrxdsp_iq8_ic16i_template(const int8_t *__restrict iq,
int16_t *__restrict outa,
int16_t *__restrict outb,
size_t bytes)
{
for (; bytes > 2; bytes -= 2) {
*(outa++) = *(iq++) << 8;
*(outb++) = *(iq++) << 8;
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_IQ8_IC8I
static inline
void xtrxdsp_iq8_ic8i_template(const int8_t *__restrict iq,
int8_t *__restrict outa,
int8_t *__restrict outb,
size_t bytes)
{
for (; bytes > 2; bytes -= 2) {
*(outa++) = *(iq++);
*(outb++) = *(iq++);
}
}
#endif
/*********************************************************************************************/
/* SSE2 */
#ifdef XTRXDSP_TEMPLATE_IQ16_SC32_SSE2
static inline
void xtrxdsp_iq16_sc32_template(const int16_t *__restrict iq,
float *__restrict out,
float inscale,
size_t bytes)
{
size_t i = bytes;
const __m128i* vp = (const __m128i* )iq;
__m128i d0, d1, d2, d3;
__m128 f0, f1, f2, f3;
__m128 scale = _mm_set_ps(SCALE2(inscale), SCALE2(inscale), SCALE2(inscale), SCALE2(inscale));
__m128i t0;
__m128i t1;
#ifdef UNALIGN_IQ_BUFFER
size_t unalign;
/* Check for unalign start of IQ */
if (unlikely((unalign = ((uintptr_t)iq & 0x1c))) > 0) {
const int16_t *ldw = (const int16_t *)vp;
for (;unalign < 32; unalign += 4, i -= 4) {
if (i == 0)
return;
*(out++) = *(ldw++) * inscale;
*(out++) = *(ldw++) * inscale;
}
vp = (const __m128i* )ldw;
}
#endif
if (i >= 32) {
t0 = _mm_load_si128(vp++);
t1 = _mm_load_si128(vp++);
for (; i >= 64; i -= 32) {
d0 = _mm_unpacklo_epi16(_mm_set1_epi16(0), t0);
d1 = _mm_unpackhi_epi16(_mm_set1_epi16(0), t0);
d2 = _mm_unpacklo_epi16(_mm_set1_epi16(0), t1);
d3 = _mm_unpackhi_epi16(_mm_set1_epi16(0), t1);
t0 = _mm_load_si128(vp++);
t1 = _mm_load_si128(vp++);
f0 = _mm_cvtepi32_ps(d0); // Latency 3
f1 = _mm_cvtepi32_ps(d1); // Latency 3
f2 = _mm_cvtepi32_ps(d2); // Latency 3
f3 = _mm_cvtepi32_ps(d3); // Latency 3
f0 = _mm_mul_ps(f0, scale); // Latency 5
_MM_STOREX_PS(out, f0); out+=4;
f1 = _mm_mul_ps(f1, scale);
_MM_STOREX_PS(out, f1); out+=4;
f2 = _mm_mul_ps(f2, scale); // Latency 5
_MM_STOREX_PS(out, f2); out+=4;
f3 = _mm_mul_ps(f3, scale);
_MM_STOREX_PS(out, f3); out+=4;
}
i -= 32;
// Last portion of 32 + bytes % 32
d0 = _mm_unpacklo_epi16(_mm_set1_epi16(0), t0);
d1 = _mm_unpackhi_epi16(_mm_set1_epi16(0), t0);
d2 = _mm_unpacklo_epi16(_mm_set1_epi16(0), t1);
d3 = _mm_unpackhi_epi16(_mm_set1_epi16(0), t1);
if (i >= 16) {
t0 = _mm_load_si128(vp++);
}
f0 = _mm_cvtepi32_ps(d0); // Latency 3
f1 = _mm_cvtepi32_ps(d1); // Latency 3
f2 = _mm_cvtepi32_ps(d2); // Latency 3
f3 = _mm_cvtepi32_ps(d3); // Latency 3
f0 = _mm_mul_ps(f0, scale); // Latency 5
_MM_STOREX_PS(out, f0); out+=4;
f1 = _mm_mul_ps(f1, scale);
_MM_STOREX_PS(out, f1); out+=4;
f2 = _mm_mul_ps(f2, scale); // Latency 5
_MM_STOREX_PS(out, f2); out+=4;
f3 = _mm_mul_ps(f3, scale);
_MM_STOREX_PS(out, f3); out+=4;
if (i == 0)
return;
} else if (i >= 16) {
t0 = _mm_load_si128(vp++);
}
if (i >= 16) {
i -= 16;
// Last portion of 32 + bytes % 32
d0 = _mm_unpacklo_epi16(_mm_set1_epi16(0), t0);
d1 = _mm_unpackhi_epi16(_mm_set1_epi16(0), t0);
f0 = _mm_cvtepi32_ps(d0); // Latency 3
f1 = _mm_cvtepi32_ps(d1); // Latency 3
f0 = _mm_mul_ps(f0, scale); // Latency 5
_MM_STOREX_PS(out, f0); out+=4;
f1 = _mm_mul_ps(f1, scale);
_MM_STOREX_PS(out, f1); out+=4;
}
// remaining part
if (unlikely(i > 0)) {
const int16_t *ldw = (const int16_t *)vp;
//for (;i != i % 4; i -= 4) {
switch (i) {
case 8:
*(out++) = *(ldw++) * inscale;
*(out++) = *(ldw++) * inscale;
case 4:
*(out++) = *(ldw++) * inscale;
*(out++) = *(ldw++) * inscale;
}
//}
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_IQ16_SC32I_SSE2
static inline
void xtrxdsp_iq16_sc32i_template(const int16_t *__restrict iq,
float *__restrict outa,
float *__restrict outb,
float inscale,
size_t bytes)
{
size_t i = bytes;
const __m128i* vp = (const __m128i* )iq;
__m128i d0, d1, d2, d3;
__m128 f0, f1, f2, f3;
__m128 z0, z1, z2, z3;
__m128 scale = _mm_set_ps(SCALE2(inscale), SCALE2(inscale), SCALE2(inscale), SCALE2(inscale));
__m128i ands = _mm_set_epi32(0xffff0000, 0xffff0000, 0xffff0000, 0xffff0000);
__m128i t0;
__m128i t1;
#ifdef UNALIGN_IQ_BUFFER
size_t unalign;
/* Check for unalign start of IQ */
if (unlikely((unalign = ((uintptr_t)iq & 0x18))) > 0) {
const int16_t *ldw = (const int16_t *)vp;
for (;unalign < 32; unalign += 8, i-= 8) {
if (i == 0)
return;
#if 0
*(outa++) = *(ldw++) * inscale;
*(outb++) = *(ldw++) * inscale;
*(outa++) = *(ldw++) * inscale;
*(outb++) = *(ldw++) * inscale;
#else
t0 = _mm_loadl_epi64((const __m128i* )ldw); ldw += 4;
d0 = _mm_and_si128(t0, ands); // B3..B0
d1 = _mm_slli_si128(t0, 2);
f1 = _mm_cvtepi32_ps(d0); // Latency 3
d1 = _mm_and_si128(d1, ands); // A3..A0
f0 = _mm_cvtepi32_ps(d1); // Latency 3
z0 = _mm_mul_ps(f0, scale); // Latency 5
_mm_storel_epi64(( __m128i* )outa, _mm_castps_si128(z0)); outa+=2;
z1 = _mm_mul_ps(f1, scale);
_mm_storel_epi64(( __m128i* )outb, _mm_castps_si128(z1)); outb+=2;
#endif
}
vp = (const __m128i* )ldw;
}
#endif
if (i >= 32) {
t0 = _mm_load_si128(vp++);
t1 = _mm_load_si128(vp++);
for (; i >= 64; i -= 32) {
d0 = _mm_and_si128(t0, ands); // B3..B0
d1 = _mm_slli_si128(t0, 2);
d2 = _mm_and_si128(t1, ands); // B7..B4
d3 = _mm_slli_si128(t1, 2);
t0 = _mm_load_si128(vp++);
t1 = _mm_load_si128(vp++);
d1 = _mm_and_si128(d1, ands); // A3..A0
f1 = _mm_cvtepi32_ps(d0); // Latency 3
d3 = _mm_and_si128(d3, ands); // A4..A4
f0 = _mm_cvtepi32_ps(d1); // Latency 3
f2 = _mm_cvtepi32_ps(d3); // Latency 3
f3 = _mm_cvtepi32_ps(d2); // Latency 3
z0 = _mm_mul_ps(f0, scale); // Latency 5
_MM_STOREX_PS(outa, z0); outa+=4;
z1 = _mm_mul_ps(f1, scale);
_MM_STOREX_PS(outb, z1); outb+=4;
z2 = _mm_mul_ps(f2, scale); // Latency 5
_MM_STOREX_PS(outa, z2); outa+=4;
z3 = _mm_mul_ps(f3, scale);
_MM_STOREX_PS(outb, z3); outb+=4;
}
i -= 32;
d0 = _mm_and_si128(t0, ands); // B3..B0
d1 = _mm_slli_si128(t0, 2);
d2 = _mm_and_si128(t1, ands); // B3..B0
d3 = _mm_slli_si128(t1, 2);
if (i >= 16) {
t0 = _mm_load_si128(vp++);
}
d1 = _mm_and_si128(d1, ands); // A3..A0
f1 = _mm_cvtepi32_ps(d0); // Latency 3
d3 = _mm_and_si128(d3, ands); // A4..A4
f0 = _mm_cvtepi32_ps(d1); // Latency 3
f2 = _mm_cvtepi32_ps(d3); // Latency 3
f3 = _mm_cvtepi32_ps(d2); // Latency 3
z0 = _mm_mul_ps(f0, scale); // Latency 5
_MM_STOREX_PS(outa, z0); outa+=4;
z1 = _mm_mul_ps(f1, scale);
_MM_STOREX_PS(outb, z1); outb+=4;
z2 = _mm_mul_ps(f2, scale); // Latency 5
_MM_STOREX_PS(outa, z2); outa+=4;
z3 = _mm_mul_ps(f3, scale);
_MM_STOREX_PS(outb, z3); outb+=4;
if (i == 0)
return;
} else if (i >= 16) {
t0 = _mm_load_si128(vp++);
}
if (unlikely(i >= 16)) {
i -= 16;
// Last portion of 32 + bytes % 32
d0 = _mm_and_si128(t0, ands); // B3..B0
d1 = _mm_slli_si128(t0, 2);
d1 = _mm_and_si128(d1, ands);
f0 = _mm_cvtepi32_ps(d1); // Latency 3
f1 = _mm_cvtepi32_ps(d0); // Latency 3
f0 = _mm_mul_ps(f0, scale); // Latency 5
f1 = _mm_mul_ps(f1, scale);
_MM_STOREX_PS(outa, f0); outa += 4;
_MM_STOREX_PS(outb, f1); outb += 4;
}
/* remaining part unaligned part */
if (i > 0) {
const int16_t *ldw = (const int16_t *)vp;
/* only 8 remaining bytes are possible here */
//for (;i != i % 8; i -= 8) {
#if 0
*(outa++) = *(ldw++) * inscale;
*(outb++) = *(ldw++) * inscale;
*(outa++) = *(ldw++) * inscale;
*(outb++) = *(ldw++) * inscale;
#else
t0 = _mm_loadl_epi64((const __m128i* )ldw); //ldw += 4;
d0 = _mm_and_si128(t0, ands); // B3..B0
d1 = _mm_slli_si128(t0, 2);
f1 = _mm_cvtepi32_ps(d0); // Latency 3
d1 = _mm_and_si128(d1, ands); // A3..A0
f0 = _mm_cvtepi32_ps(d1); // Latency 3
z0 = _mm_mul_ps(f0, scale); // Latency 5
_mm_storel_epi64(( __m128i* )outa, _mm_castps_si128(z0)); //outa+=2;
z1 = _mm_mul_ps(f1, scale);
_mm_storel_epi64(( __m128i* )outb, _mm_castps_si128(z1)); //outb+=2;
#endif
//}
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_B8_EXPAND_X2
DECLARE_B8_EXPAND_X2_FUNC(XTRXDSP_TEMPLATE_B8_EXPAND_X2_NAME)
{
unsigned n, q;
const uint64_t *p_in = (const uint64_t *)data;
uint64_t *p_out = (uint64_t *)out;
for (n = 0, q = 0; n < count_blocks; n++, q += 2) {
p_out[q] = p_out[q + 1] = p_in[n];
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_B8_EXPAND_X4
DECLARE_B8_EXPAND_X4_FUNC(XTRXDSP_TEMPLATE_B8_EXPAND_X4_NAME)
{
unsigned n, q;
const uint64_t *p_in = (const uint64_t *)data;
uint64_t *p_out = (uint64_t *)out;
for (n = 0, q = 0; n < count_blocks; n++, q += 4) {
p_out[q] = p_out[q + 1] = p_out[q + 2] = p_out[q + 3] = p_in[n];
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_B4_EXPAND_X2
DECLARE_B4_EXPAND_X2_FUNC(XTRXDSP_TEMPLATE_B4_EXPAND_X2_NAME)
{
unsigned n, q;
const uint32_t *p_in = (const uint32_t *)data;
uint32_t *p_out = (uint32_t *)out;
for (n = 0, q = 0; n < count_blocks; n++, q += 2) {
p_out[q] = p_out[q + 1] = p_in[n];
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_B4_EXPAND_X4
DECLARE_B4_EXPAND_X4_FUNC(XTRXDSP_TEMPLATE_B4_EXPAND_X4_NAME)
{
unsigned n, q;
const uint32_t *p_in = (const uint32_t *)data;
uint32_t *p_out = (uint32_t *)out;
for (n = 0, q = 0; n < count_blocks; n++, q += 4) {
p_out[q] = p_out[q + 1] = p_out[q + 2] = p_out[q + 3] = p_in[n];
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_SC32_CONV64
DECLARE_SC32_CONV64_FUNC(XTRXDSP_TEMPLATE_SC32_CONV64_NAME)
{
unsigned i, n;
for (n = 0; n < count - 127; n += (2 << decim_bits)) {
float acc_i = 0;
float acc_q = 0;
for (i = 0; i < 64; i++) {
acc_i += data[n + 2*i] * conv[i];
acc_q += data[n + 2*i + 1] * conv[i];
}
out[(n >> decim_bits) + 0] = acc_i;
out[(n >> decim_bits) + 1] = acc_q;
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_IQ16_CONV64
DECLARE_IQ16_CONV64_FUNC(XTRXDSP_TEMPLATE_IQ16_CONV64_NAME)
{
unsigned i, n;
for (n = 0; n < count - 127; n += (2 << decim_bits)) {
int64_t acc_i = 0;
int64_t acc_q = 0;
for (i = 0; i < 64; i++) {
acc_i += (int64_t)data[n + 2*i] * conv[i];
acc_q += (int64_t)data[n + 2*i + 1] * conv[i];
}
out[(n >> decim_bits) + 0] = acc_i >> 16;
out[(n >> decim_bits) + 1] = acc_q >> 16;
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_SC32_CONV64_AVX
static __m256 conv_shuffle_filter_taps_avx(__m256 fi)
{
// [f0 f1 f2 f3]
__m128 lo = _mm256_castps256_ps128(fi);
// [f4 f5 f6 f7]
__m128 hi = _mm256_extractf128_ps(fi, 1);
// [f0 f1 f4 f5]
__m128 lo_s = _mm_shuffle_ps(lo, hi, _MM_SHUFFLE(1,0,1,0));
// [f2 f3 f6 f4]
__m128 hi_s = _mm_shuffle_ps(lo, hi, _MM_SHUFFLE(3,2,3,2));
return _mm256_insertf128_ps(_mm256_castps128_ps256(lo_s), hi_s, 1);
}
__attribute__((optimize("unroll-loops")))
DECLARE_SC32_CONV64_FUNC(XTRXDSP_TEMPLATE_SC32_CONV64_NAME)
{
unsigned i, n;
#define FA(x) conv_shuffle_filter_taps_avx(x)
__m256 f[8];
f[0] = FA(_mm256_load_ps(conv)); //8 taps
f[1] = FA(_mm256_load_ps(conv + 8)); //8 taps
f[2] = FA(_mm256_load_ps(conv + 16)); //8 taps
f[3] = FA(_mm256_load_ps(conv + 24)); //8 taps
f[4] = FA(_mm256_load_ps(conv + 32)); //8 taps
f[5] = FA(_mm256_load_ps(conv + 40)); //8 taps
f[6] = FA(_mm256_load_ps(conv + 48)); //8 taps
f[7] = FA(_mm256_load_ps(conv + 56)); //8 taps
__m256 l0, l1, l2, l3;
__m256 ma0, ma1;
__m256 mt0, mt1, mta, mts, mth;
float ci, cq;
for (n = 0; n < count - 127; n += (2 << decim_bits)) {
ma0 = _mm256_setzero_ps(); //Acc_I
ma1 = _mm256_setzero_ps(); //Acc_Q
for (i = 0; i < 8; i++) {
l0 = _mm256_loadu_ps(data + n + 2*8*i); //[I0 Q0 I1 Q1 I2 Q2 I3 Q3]
l1 = _mm256_loadu_ps(data + n + 2*8*i + 8);//[I4 Q4 I5 Q5 I6 Q6 I7 Q7]
// [I0 I1 I4 I5 I2 I3 I6 I7 ]
l2 = _mm256_shuffle_ps(l0, l1, _MM_SHUFFLE(2,0,2,0)); // I
// [Q0 Q1 Q4 Q5 Q2 Q3 I6 I7 ]
l3 = _mm256_shuffle_ps(l0, l1, _MM_SHUFFLE(3,1,3,1)); // Q
#ifdef XTRXDSP_TEMPLATE_FMA
ma0 = _mm256_fmadd_ps(l2, f[i], ma0);
ma1 = _mm256_fmadd_ps(l3, f[i], ma1);
#else
/* gcc 5.x handles _mm256_add_ps(..., _mm256_mul_ps(..)) to form FMA
* and it produces better code than pure _mm256_fmadd_ps call
*/
ma0 = _mm256_add_ps(ma0, _mm256_mul_ps(l2, f[i]));
ma1 = _mm256_add_ps(ma1, _mm256_mul_ps(l3, f[i]));
#endif
}
mt0 = _mm256_permute2f128_ps(ma0, ma1, _MM_SHUFFLE(0, 2, 0, 0)); //Sum_I[127:0] . Sum_Q[127:0]
mt1 = _mm256_permute2f128_ps(ma0, ma1, _MM_SHUFFLE(0, 3, 0, 1)); //Sum_I[255:128] . Sum_Q[255:128]
// [ si3 si2 si1 si0 sq3 sq2 sq1 sq0 ]
mta = _mm256_add_ps(mt0, mt1);
mts = _mm256_shuffle_ps(mta, mta, _MM_SHUFFLE(2, 3, 0, 1));
// [ si3+si2 si3+si2 si1+si0 si1+si0 sq3+sq2 sq3+sq2 sq1+sq0 sq1+sq0 ]
mts = _mm256_add_ps(mts, mta);
// [ si1+si0 si1+si0 si3+si2 si3+si2 sq1+sq0 sq1+sq0 sq3+sq2 sq3+sq2 ]
mth = _mm256_shuffle_ps(mts, mts, _MM_SHUFFLE(1, 0, 3, 2));
mth = _mm256_add_ps(mts, mth);
ci = _mm_cvtss_f32(_mm256_castps256_ps128(mth));
cq = _mm_cvtss_f32(_mm256_extractf128_ps(mth, 1));
out[(n >> decim_bits) + 0] = ci;
out[(n >> decim_bits) + 1] = cq;
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_SC32_IQ16
static inline
void xtrxdsp_sc32_iq16_template(const float *__restrict iq,
int16_t *__restrict out,
float scale,
size_t outbytes)
{
for (; outbytes > 1; outbytes -= 2) {
*out++ = *iq++ * scale;
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_SC32I_IQ16
static inline
void xtrxdsp_sc32i_iq16_template(const float *__restrict i,
const float *__restrict q,
int16_t *__restrict out,
float scale,
size_t outbytes)
{
for (; outbytes > 3; outbytes -= 4) {
*out++ = *i++ * scale;
*out++ = *q++ * scale;
}
}
#endif
#ifdef XTRXDSP_TEMPLATE_IC16I_IQ16
static inline
void xtrxdsp_ic16i_iq16_template(const int16_t *__restrict i,
const int16_t *__restrict q,
int16_t *__restrict out,
size_t outbytes)
{
for (; outbytes > 3; outbytes -= 4) {
*out++ = *i++;
*out++ = *q++;
}
}
#endif
#if defined(XTRXDSP_TEMPLATE_SC32I_IQ16_AVX) || defined(XTRXDSP_TEMPLATE_SC32I_IQ16_AVX2)
static inline
void xtrxdsp_sc32i_iq16_template(const float *__restrict i,
const float *__restrict q,
int16_t *__restrict out,
float scale,
size_t outbytes)
{
float si = scale * 0x10000;
const float *pi = i;
const float *pq = q;
__m256 li0, li1, lq0, lq1;
__m256 si0, si1, sq0, sq1;
__m256i ni0, ni1, nq0, nq1;
#ifdef XTRXDSP_TEMPLATE_SC32I_IQ16_AVX2
__m256i sni0, sni1, snq0, snq1;
__m256i o0, o1;
#else
__m256 sni0, sni1, snq0, snq1;
__m256 o0, o1;
#endif
__m256 scaleq = _mm256_set_ps(si, si, si, si, si, si, si, si);
__m256 scalei = _mm256_set_ps(scale, scale, scale, scale, scale, scale, scale, scale);
__m256i andmask = _mm256_set_epi16(0xFFFF, 0, 0xFFFF, 0, 0xFFFF, 0, 0xFFFF, 0,
0xFFFF, 0, 0xFFFF, 0, 0xFFFF, 0, 0xFFFF, 0);
for (; outbytes > 64; outbytes -= 64, pi += 16, pq += 16, out += 32) {
li0 = _mm256_loadu_ps(pi);
li1 = _mm256_loadu_ps(pi + 8);
lq0 = _mm256_loadu_ps(pq);
lq1 = _mm256_loadu_ps(pq + 8);
si0 = _mm256_mul_ps(li0, scalei);
si1 = _mm256_mul_ps(li1, scalei);
sq0 = _mm256_mul_ps(lq0, scaleq);
sq1 = _mm256_mul_ps(lq1, scaleq);
ni0 = _mm256_cvttps_epi32(si0);
ni1 = _mm256_cvttps_epi32(si1);
nq0 = _mm256_cvttps_epi32(sq0);
nq1 = _mm256_cvttps_epi32(sq1);
#ifdef XTRXDSP_TEMPLATE_SC32I_IQ16_AVX2
sni0 = _mm256_andnot_si256(andmask, ni0);
sni1 = _mm256_andnot_si256(andmask, ni1);
snq0 = _mm256_and_si256(andmask, nq0);
snq1 = _mm256_and_si256(andmask, nq1);
o0 = _mm256_or_si256(sni0, snq0);
o1 = _mm256_or_si256(sni1, snq1);
_mm256_storeu_si256(out, o0);
_mm256_storeu_si256(out + 16, o1);
#else
sni0 = _mm256_andnot_ps(_mm256_castsi256_ps(andmask), _mm256_castsi256_ps(ni0));
sni1 = _mm256_andnot_ps(_mm256_castsi256_ps(andmask), _mm256_castsi256_ps(ni1));
snq0 = _mm256_and_ps(_mm256_castsi256_ps(andmask), _mm256_castsi256_ps(nq0));
snq1 = _mm256_and_ps(_mm256_castsi256_ps(andmask), _mm256_castsi256_ps(nq1));
o0 = _mm256_or_ps(sni0, snq0);
o1 = _mm256_or_ps(sni1, snq1);
_mm256_storeu_ps((float*)(out), o0);
_mm256_storeu_ps((float*)(out + 16), o1);
#endif
}
for (; outbytes > 3; outbytes -= 4) {
*out++ = *pi++ * scale;
*out++ = *pq++ * scale;
}
}
#endif
|