1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
/*
* Copyright 2012 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <string.h>
#include "../unit_test/unit_test.h"
#include "libyuv/basic_types.h"
#include "libyuv/cpu_id.h"
#include "libyuv/version.h"
namespace libyuv {
TEST_F(LibYUVBaseTest, TestCpuHas) {
int cpu_flags = TestCpuFlag(-1);
printf("Cpu Flags %d\n", cpu_flags);
#if defined(__arm__) || defined(__aarch64__)
int has_arm = TestCpuFlag(kCpuHasARM);
printf("Has ARM %d\n", has_arm);
int has_neon = TestCpuFlag(kCpuHasNEON);
printf("Has NEON %d\n", has_neon);
#endif
int has_x86 = TestCpuFlag(kCpuHasX86);
int has_sse2 = TestCpuFlag(kCpuHasSSE2);
int has_ssse3 = TestCpuFlag(kCpuHasSSSE3);
int has_sse41 = TestCpuFlag(kCpuHasSSE41);
int has_sse42 = TestCpuFlag(kCpuHasSSE42);
int has_avx = TestCpuFlag(kCpuHasAVX);
int has_avx2 = TestCpuFlag(kCpuHasAVX2);
int has_erms = TestCpuFlag(kCpuHasERMS);
int has_fma3 = TestCpuFlag(kCpuHasFMA3);
int has_f16c = TestCpuFlag(kCpuHasF16C);
int has_gfni = TestCpuFlag(kCpuHasGFNI);
int has_avx512bw = TestCpuFlag(kCpuHasAVX512BW);
int has_avx512vl = TestCpuFlag(kCpuHasAVX512VL);
int has_avx512vnni = TestCpuFlag(kCpuHasAVX512VNNI);
int has_avx512vbmi = TestCpuFlag(kCpuHasAVX512VBMI);
int has_avx512vbmi2 = TestCpuFlag(kCpuHasAVX512VBMI2);
int has_avx512vbitalg = TestCpuFlag(kCpuHasAVX512VBITALG);
int has_avx512vpopcntdq = TestCpuFlag(kCpuHasAVX512VPOPCNTDQ);
printf("Has X86 %d\n", has_x86);
printf("Has SSE2 %d\n", has_sse2);
printf("Has SSSE3 %d\n", has_ssse3);
printf("Has SSE41 %d\n", has_sse41);
printf("Has SSE42 %d\n", has_sse42);
printf("Has AVX %d\n", has_avx);
printf("Has AVX2 %d\n", has_avx2);
printf("Has ERMS %d\n", has_erms);
printf("Has FMA3 %d\n", has_fma3);
printf("Has F16C %d\n", has_f16c);
printf("Has GFNI %d\n", has_gfni);
printf("Has AVX512BW %d\n", has_avx512bw);
printf("Has AVX512VL %d\n", has_avx512vl);
printf("Has AVX512VNNI %d\n", has_avx512vnni);
printf("Has AVX512VBMI %d\n", has_avx512vbmi);
printf("Has AVX512VBMI2 %d\n", has_avx512vbmi2);
printf("Has AVX512VBITALG %d\n", has_avx512vbitalg);
printf("Has AVX512VPOPCNTDQ %d\n", has_avx512vpopcntdq);
#if defined(__mips__)
int has_mips = TestCpuFlag(kCpuHasMIPS);
printf("Has MIPS %d\n", has_mips);
int has_msa = TestCpuFlag(kCpuHasMSA);
printf("Has MSA %d\n", has_msa);
#endif
#if defined(__loongarch__)
int has_loongarch = TestCpuFlag(kCpuHasLOONGARCH);
printf("Has LOONGARCH %d\n", has_loongarch);
int has_lsx = TestCpuFlag(kCpuHasLSX);
printf("Has LSX %d\n", has_lsx);
int has_lasx = TestCpuFlag(kCpuHasLASX);
printf("Has LASX %d\n", has_lasx);
#endif
}
TEST_F(LibYUVBaseTest, TestCompilerMacros) {
// Tests all macros used in public headers.
#ifdef __ATOMIC_RELAXED
printf("__ATOMIC_RELAXED %d\n", __ATOMIC_RELAXED);
#endif
#ifdef __cplusplus
printf("__cplusplus %ld\n", __cplusplus);
#endif
#ifdef __clang_major__
printf("__clang_major__ %d\n", __clang_major__);
#endif
#ifdef __clang_minor__
printf("__clang_minor__ %d\n", __clang_minor__);
#endif
#ifdef __GNUC__
printf("__GNUC__ %d\n", __GNUC__);
#endif
#ifdef __GNUC_MINOR__
printf("__GNUC_MINOR__ %d\n", __GNUC_MINOR__);
#endif
#ifdef __i386__
printf("__i386__ %d\n", __i386__);
#endif
#ifdef __mips
printf("__mips %d\n", __mips);
#endif
#ifdef __mips_isa_rev
printf("__mips_isa_rev %d\n", __mips_isa_rev);
#endif
#ifdef __x86_64__
printf("__x86_64__ %d\n", __x86_64__);
#endif
#ifdef _MSC_VER
printf("_MSC_VER %d\n", _MSC_VER);
#endif
#ifdef __aarch64__
printf("__aarch64__ %d\n", __aarch64__);
#endif
#ifdef __APPLE__
printf("__APPLE__ %d\n", __APPLE__);
#endif
#ifdef __arm__
printf("__arm__ %d\n", __arm__);
#endif
#ifdef __clang__
printf("__clang__ %d\n", __clang__);
#endif
#ifdef __CLR_VER
printf("__CLR_VER %d\n", __CLR_VER);
#endif
#ifdef __CYGWIN__
printf("__CYGWIN__ %d\n", __CYGWIN__);
#endif
#ifdef __llvm__
printf("__llvm__ %d\n", __llvm__);
#endif
#ifdef __mips_msa
printf("__mips_msa %d\n", __mips_msa);
#endif
#ifdef __native_client__
printf("__native_client__ %d\n", __native_client__);
#endif
#ifdef __pic__
printf("__pic__ %d\n", __pic__);
#endif
#ifdef __pnacl__
printf("__pnacl__ %d\n", __pnacl__);
#endif
#ifdef _M_IX86
printf("_M_IX86 %d\n", _M_IX86);
#endif
#ifdef _M_X64
printf("_M_X64 %d\n", _M_X64);
#endif
#ifdef _MIPS_ARCH_LOONGSON3A
printf("_MIPS_ARCH_LOONGSON3A %d\n", _MIPS_ARCH_LOONGSON3A);
#endif
#ifdef __loongarch__
printf("__loongarch__ %d\n", __loongarch__);
#endif
#ifdef _WIN32
printf("_WIN32 %d\n", _WIN32);
#endif
#ifdef GG_LONGLONG
printf("GG_LONGLONG %d\n", GG_LONGLONG);
#endif
#ifdef INT_TYPES_DEFINED
printf("INT_TYPES_DEFINED\n");
#endif
#ifdef __has_feature
printf("__has_feature\n");
#if __has_feature(memory_sanitizer)
printf("__has_feature(memory_sanitizer) %d\n",
__has_feature(memory_sanitizer));
#endif
#endif
}
#if defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) || \
defined(_M_X64)
TEST_F(LibYUVBaseTest, TestCpuId) {
int has_x86 = TestCpuFlag(kCpuHasX86);
if (has_x86) {
int cpu_info[4];
// Vendor ID:
// AuthenticAMD AMD processor
// CentaurHauls Centaur processor
// CyrixInstead Cyrix processor
// GenuineIntel Intel processor
// GenuineTMx86 Transmeta processor
// Geode by NSC National Semiconductor processor
// NexGenDriven NexGen processor
// RiseRiseRise Rise Technology processor
// SiS SiS SiS SiS processor
// UMC UMC UMC UMC processor
CpuId(0, 0, cpu_info);
cpu_info[0] = cpu_info[1]; // Reorder output
cpu_info[1] = cpu_info[3];
cpu_info[3] = 0;
printf("Cpu Vendor: %s %x %x %x\n", reinterpret_cast<char*>(&cpu_info[0]),
cpu_info[0], cpu_info[1], cpu_info[2]);
EXPECT_EQ(12u, strlen(reinterpret_cast<char*>(&cpu_info[0])));
// CPU Family and Model
// 3:0 - Stepping
// 7:4 - Model
// 11:8 - Family
// 13:12 - Processor Type
// 19:16 - Extended Model
// 27:20 - Extended Family
CpuId(1, 0, cpu_info);
int family = ((cpu_info[0] >> 8) & 0x0f) | ((cpu_info[0] >> 16) & 0xff0);
int model = ((cpu_info[0] >> 4) & 0x0f) | ((cpu_info[0] >> 12) & 0xf0);
printf("Cpu Family %d (0x%x), Model %d (0x%x)\n", family, family, model,
model);
}
}
#endif
static int FileExists(const char* file_name) {
FILE* f = fopen(file_name, "r");
if (!f) {
return 0;
}
fclose(f);
return 1;
}
TEST_F(LibYUVBaseTest, TestLinuxNeon) {
if (FileExists("../../unit_test/testdata/arm_v7.txt")) {
printf("Note: testing to load \"../../unit_test/testdata/arm_v7.txt\"\n");
EXPECT_EQ(0, ArmCpuCaps("../../unit_test/testdata/arm_v7.txt"));
EXPECT_EQ(kCpuHasNEON, ArmCpuCaps("../../unit_test/testdata/tegra3.txt"));
EXPECT_EQ(kCpuHasNEON, ArmCpuCaps("../../unit_test/testdata/juno.txt"));
} else {
printf("WARNING: unable to load \"../../unit_test/testdata/arm_v7.txt\"\n");
}
#if defined(__linux__) && defined(__ARM_NEON__)
if (FileExists("/proc/cpuinfo")) {
if (kCpuHasNEON != ArmCpuCaps("/proc/cpuinfo")) {
// This can happen on ARM emulator but /proc/cpuinfo is from host.
printf("WARNING: Neon build enabled but CPU does not have NEON\n");
}
} else {
printf("WARNING: unable to load \"/proc/cpuinfo\"\n");
}
#endif
}
TEST_F(LibYUVBaseTest, TestLinuxMipsMsa) {
if (FileExists("../../unit_test/testdata/mips.txt")) {
printf("Note: testing to load \"../../unit_test/testdata/mips.txt\"\n");
EXPECT_EQ(0, MipsCpuCaps("../../unit_test/testdata/mips.txt"));
EXPECT_EQ(kCpuHasMSA, MipsCpuCaps("../../unit_test/testdata/mips_msa.txt"));
EXPECT_EQ(kCpuHasMSA,
MipsCpuCaps("../../unit_test/testdata/mips_loongson2k.txt"));
} else {
printf("WARNING: unable to load \"../../unit_test/testdata/mips.txt\"\n");
}
}
// TODO(fbarchard): Fix clangcl test of cpuflags.
#ifdef _MSC_VER
TEST_F(LibYUVBaseTest, DISABLED_TestSetCpuFlags) {
#else
TEST_F(LibYUVBaseTest, TestSetCpuFlags) {
#endif
// Reset any masked flags that may have been set so auto init is enabled.
MaskCpuFlags(0);
int original_cpu_flags = TestCpuFlag(-1);
// Test setting different CPU configurations.
int cpu_flags = kCpuHasARM | kCpuHasNEON | kCpuInitialized;
SetCpuFlags(cpu_flags);
EXPECT_EQ(cpu_flags, TestCpuFlag(-1));
cpu_flags = kCpuHasX86 | kCpuInitialized;
SetCpuFlags(cpu_flags);
EXPECT_EQ(cpu_flags, TestCpuFlag(-1));
// Test that setting 0 turns auto-init back on.
SetCpuFlags(0);
EXPECT_EQ(original_cpu_flags, TestCpuFlag(-1));
// Restore the CPU flag mask.
MaskCpuFlags(benchmark_cpu_info_);
}
} // namespace libyuv
|