1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <time.h>
#include "../unit_test/unit_test.h"
#include "libyuv/cpu_id.h"
#include "libyuv/scale_uv.h"
namespace libyuv {
#define STRINGIZE(line) #line
#define FILELINESTR(file, line) file ":" STRINGIZE(line)
#if !defined(DISABLE_SLOW_TESTS) || defined(__x86_64__) || defined(__i386__)
// SLOW TESTS are those that are unoptimized C code.
// FULL TESTS are optimized but test many variations of the same code.
#define ENABLE_FULL_TESTS
#endif
// Test scaling with C vs Opt and return maximum pixel difference. 0 = exact.
static int UVTestFilter(int src_width,
int src_height,
int dst_width,
int dst_height,
FilterMode f,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info) {
if (!SizeValid(src_width, src_height, dst_width, dst_height)) {
return 0;
}
int i, j;
const int b = 0; // 128 to test for padding/stride.
int64_t src_uv_plane_size =
(Abs(src_width) + b * 2) * (Abs(src_height) + b * 2) * 2LL;
int src_stride_uv = (b * 2 + Abs(src_width)) * 2;
align_buffer_page_end(src_uv, src_uv_plane_size);
if (!src_uv) {
printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
return 0;
}
MemRandomize(src_uv, src_uv_plane_size);
int64_t dst_uv_plane_size = (dst_width + b * 2) * (dst_height + b * 2) * 2LL;
int dst_stride_uv = (b * 2 + dst_width) * 2;
align_buffer_page_end(dst_uv_c, dst_uv_plane_size);
align_buffer_page_end(dst_uv_opt, dst_uv_plane_size);
if (!dst_uv_c || !dst_uv_opt) {
printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
return 0;
}
memset(dst_uv_c, 2, dst_uv_plane_size);
memset(dst_uv_opt, 3, dst_uv_plane_size);
// Warm up both versions for consistent benchmarks.
MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization.
UVScale(src_uv + (src_stride_uv * b) + b * 2, src_stride_uv, src_width,
src_height, dst_uv_c + (dst_stride_uv * b) + b * 2, dst_stride_uv,
dst_width, dst_height, f);
MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization.
UVScale(src_uv + (src_stride_uv * b) + b * 2, src_stride_uv, src_width,
src_height, dst_uv_opt + (dst_stride_uv * b) + b * 2, dst_stride_uv,
dst_width, dst_height, f);
MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization.
double c_time = get_time();
UVScale(src_uv + (src_stride_uv * b) + b * 2, src_stride_uv, src_width,
src_height, dst_uv_c + (dst_stride_uv * b) + b * 2, dst_stride_uv,
dst_width, dst_height, f);
c_time = (get_time() - c_time);
MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization.
double opt_time = get_time();
for (i = 0; i < benchmark_iterations; ++i) {
UVScale(src_uv + (src_stride_uv * b) + b * 2, src_stride_uv, src_width,
src_height, dst_uv_opt + (dst_stride_uv * b) + b * 2, dst_stride_uv,
dst_width, dst_height, f);
}
opt_time = (get_time() - opt_time) / benchmark_iterations;
// Report performance of C vs OPT
printf("filter %d - %8d us C - %8d us OPT\n", f,
static_cast<int>(c_time * 1e6), static_cast<int>(opt_time * 1e6));
// C version may be a little off from the optimized. Order of
// operations may introduce rounding somewhere. So do a difference
// of the buffers and look to see that the max difference isn't
// over 2.
int max_diff = 0;
for (i = b; i < (dst_height + b); ++i) {
for (j = b * 2; j < (dst_width + b) * 2; ++j) {
int abs_diff = Abs(dst_uv_c[(i * dst_stride_uv) + j] -
dst_uv_opt[(i * dst_stride_uv) + j]);
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
}
free_aligned_buffer_page_end(dst_uv_c);
free_aligned_buffer_page_end(dst_uv_opt);
free_aligned_buffer_page_end(src_uv);
return max_diff;
}
// The following adjustments in dimensions ensure the scale factor will be
// exactly achieved.
#define DX(x, nom, denom) static_cast<int>((Abs(x) / nom) * nom)
#define SX(x, nom, denom) static_cast<int>((x / nom) * denom)
#define TEST_FACTOR1(name, filter, nom, denom, max_diff) \
TEST_F(LibYUVScaleTest, UVScaleDownBy##name##_##filter) { \
int diff = UVTestFilter( \
SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \
DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \
kFilter##filter, benchmark_iterations_, disable_cpu_flags_, \
benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
}
#if defined(ENABLE_FULL_TESTS)
// Test a scale factor with all 4 filters. Expect unfiltered to be exact, but
// filtering is different fixed point implementations for SSSE3, Neon and C.
#define TEST_FACTOR(name, nom, denom) \
TEST_FACTOR1(name, None, nom, denom, 0) \
TEST_FACTOR1(name, Linear, nom, denom, 3) \
TEST_FACTOR1(name, Bilinear, nom, denom, 3) \
TEST_FACTOR1(name, Box, nom, denom, 3)
#else
// Test a scale factor with Bilinear.
#define TEST_FACTOR(name, nom, denom) \
TEST_FACTOR1(name, Bilinear, nom, denom, 3)
#endif
TEST_FACTOR(2, 1, 2)
TEST_FACTOR(4, 1, 4)
// TEST_FACTOR(8, 1, 8) Disable for benchmark performance.
TEST_FACTOR(3by4, 3, 4)
TEST_FACTOR(3by8, 3, 8)
TEST_FACTOR(3, 1, 3)
#undef TEST_FACTOR1
#undef TEST_FACTOR
#undef SX
#undef DX
#define TEST_SCALETO1(name, width, height, filter, max_diff) \
TEST_F(LibYUVScaleTest, name##To##width##x##height##_##filter) { \
int diff = UVTestFilter(benchmark_width_, benchmark_height_, width, \
height, kFilter##filter, benchmark_iterations_, \
disable_cpu_flags_, benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
} \
TEST_F(LibYUVScaleTest, name##From##width##x##height##_##filter) { \
int diff = UVTestFilter(width, height, Abs(benchmark_width_), \
Abs(benchmark_height_), kFilter##filter, \
benchmark_iterations_, disable_cpu_flags_, \
benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
}
#if defined(ENABLE_FULL_TESTS)
/// Test scale to a specified size with all 4 filters.
#define TEST_SCALETO(name, width, height) \
TEST_SCALETO1(name, width, height, None, 0) \
TEST_SCALETO1(name, width, height, Linear, 3) \
TEST_SCALETO1(name, width, height, Bilinear, 3)
#else
#define TEST_SCALETO(name, width, height) \
TEST_SCALETO1(name, width, height, Bilinear, 3)
#endif
TEST_SCALETO(UVScale, 1, 1)
// TEST_SCALETO(UVScale, 256, 144) /* 128x72 * 2 */
TEST_SCALETO(UVScale, 320, 240)
TEST_SCALETO(UVScale, 569, 480)
TEST_SCALETO(UVScale, 640, 360)
#ifndef DISABLE_SLOW_TESTS
TEST_SCALETO(UVScale, 1280, 720)
TEST_SCALETO(UVScale, 1920, 1080)
#endif // DISABLE_SLOW_TESTS
#undef TEST_SCALETO1
#undef TEST_SCALETO
#define TEST_SCALESWAPXY1(name, filter, max_diff) \
TEST_F(LibYUVScaleTest, name##SwapXY_##filter) { \
int diff = \
UVTestFilter(benchmark_width_, benchmark_height_, benchmark_height_, \
benchmark_width_, kFilter##filter, benchmark_iterations_, \
disable_cpu_flags_, benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
}
#if defined(ENABLE_FULL_TESTS)
// Test scale with swapped width and height with all 3 filters.
TEST_SCALESWAPXY1(UVScale, None, 0)
TEST_SCALESWAPXY1(UVScale, Linear, 0)
TEST_SCALESWAPXY1(UVScale, Bilinear, 0)
#else
TEST_SCALESWAPXY1(UVScale, Bilinear, 0)
#endif
#undef TEST_SCALESWAPXY1
TEST_F(LibYUVScaleTest, UVTest3x) {
const int kSrcStride = 480 * 2;
const int kDstStride = 160 * 2;
const int kSize = kSrcStride * 3;
align_buffer_page_end(orig_pixels, kSize);
for (int i = 0; i < 480 * 3; ++i) {
orig_pixels[i * 2 + 0] = i;
orig_pixels[i * 2 + 1] = 255 - i;
}
align_buffer_page_end(dest_pixels, kDstStride);
int iterations160 = (benchmark_width_ * benchmark_height_ + (160 - 1)) / 160 *
benchmark_iterations_;
for (int i = 0; i < iterations160; ++i) {
UVScale(orig_pixels, kSrcStride, 480, 3, dest_pixels, kDstStride, 160, 1,
kFilterBilinear);
}
EXPECT_EQ(225, dest_pixels[0]);
EXPECT_EQ(255 - 225, dest_pixels[1]);
UVScale(orig_pixels, kSrcStride, 480, 3, dest_pixels, kDstStride, 160, 1,
kFilterNone);
EXPECT_EQ(225, dest_pixels[0]);
EXPECT_EQ(255 - 225, dest_pixels[1]);
free_aligned_buffer_page_end(dest_pixels);
free_aligned_buffer_page_end(orig_pixels);
}
TEST_F(LibYUVScaleTest, UVTest4x) {
const int kSrcStride = 640 * 2;
const int kDstStride = 160 * 2;
const int kSize = kSrcStride * 4;
align_buffer_page_end(orig_pixels, kSize);
for (int i = 0; i < 640 * 4; ++i) {
orig_pixels[i * 2 + 0] = i;
orig_pixels[i * 2 + 1] = 255 - i;
}
align_buffer_page_end(dest_pixels, kDstStride);
int iterations160 = (benchmark_width_ * benchmark_height_ + (160 - 1)) / 160 *
benchmark_iterations_;
for (int i = 0; i < iterations160; ++i) {
UVScale(orig_pixels, kSrcStride, 640, 4, dest_pixels, kDstStride, 160, 1,
kFilterBilinear);
}
EXPECT_EQ(66, dest_pixels[0]);
EXPECT_EQ(190, dest_pixels[1]);
UVScale(orig_pixels, kSrcStride, 64, 4, dest_pixels, kDstStride, 16, 1,
kFilterNone);
EXPECT_EQ(2, dest_pixels[0]); // expect the 3rd pixel of the 3rd row
EXPECT_EQ(255 - 2, dest_pixels[1]);
free_aligned_buffer_page_end(dest_pixels);
free_aligned_buffer_page_end(orig_pixels);
}
} // namespace libyuv
|