1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
/*
* zc - zip crack library
* Copyright (C) 2012-2018 Marc Ferland
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include "ptext_private.h"
#include "list.h"
#define k2(index) w->key2_final[index]
#define k1(index) w->key1_final[index]
#define k0(index) w->key0_final[index]
#define cipher(index) w->ciphertext[index]
#define plaintext(index) w->plaintext[index]
struct worker {
uint32_t key2_final[13];
uint32_t key1_final[13];
uint32_t key0_final[13];
const uint8_t *plaintext; /* points to ptext->plaintext */
const uint8_t *ciphertext; /* points to ptext->ciphertext */
const uint8_t (*lsbk0_lookup)[4]; /* points to ptext->lsbk0_lookup */
const uint8_t *lsbk0_count; /* points to ptext->lsbk0_count */
const uint16_t *bits_15_2; /* points to ptext->k2r */
struct zc_key inter_rep;
pthread_t id;
pthread_mutex_t *mutex;
size_t *next;
struct zc_crk_ptext *ptext;
int worker_err_status;
int pthread_create_err;
uint32_t key2[12][64];
size_t key2_size[12];
struct list_head workers;
};
static void key2_uniq(struct worker *w, size_t i)
{
uniq(w->key2[i], &w->key2_size[i]);
}
static void key2_reset(struct worker *w, size_t i)
{
w->key2_size[i] = 0;
}
static uint32_t *key2_get_arr(struct worker *w, size_t i)
{
return w->key2[i];
}
static uint32_t key2_get_key(struct worker *w, size_t i, size_t j)
{
return w->key2[i][j];
}
static void key2_set_size(struct worker *w, size_t i, size_t size)
{
w->key2_size[i] = size;
}
static size_t key2_get_size(struct worker *w, size_t i)
{
return w->key2_size[i];
}
static void compute_one_intermediate_int_rep(uint8_t cipher, uint8_t *plaintext,
struct zc_key *k)
{
k->key2 = crc32inv(k->key2, msb(k->key1));
k->key1 = ((k->key1 - 1) * MULTINV) - lsb(k->key0);
uint32_t tmp = k->key2 | 3;
uint32_t key3 = lsb((tmp * (tmp ^ 1)) >> 8);
*plaintext = cipher ^ key3;
k->key0 = crc32inv(k->key0, *plaintext);
}
static int compute_intermediate_internal_rep(struct worker *w, struct zc_key *k)
{
uint32_t i = 4;
k->key2 = k2(i);
k->key1 = k1(i);
/* key0 is already set */
do {
uint8_t p;
compute_one_intermediate_int_rep(cipher(i - 1), &p, k);
if (p != plaintext(i - 1))
break;
--i;
} while (i > 0);
if (i == 0) {
w->inter_rep = *k;
return 0;
}
return -1;
}
static bool verify_key0(const struct worker *w, uint32_t key0,
uint32_t start, uint32_t stop)
{
for (uint32_t i = start; i < stop; ++i) {
key0 = crc32(key0, plaintext(i));
if (mask_lsb(key0) != k0(i + 1))
return false;
}
return true;
}
static void key_found(struct worker *w)
{
pthread_mutex_lock(w->mutex);
w->ptext->found = true;
w->ptext->found_by = pthread_self();
pthread_mutex_unlock(w->mutex);
}
static void compute_key0(struct worker *w)
{
struct zc_key k = { .key0 = 0x0, .key1 = 0x0, .key2 = 0x0 };
/* calculate key0_6{0..15} */
k.key0 = (k0(7) ^ crc_32_tab[k0(6) ^ plaintext(6)]) << 8;
k.key0 = (k.key0 | k0(6)) & 0x0000ffff;
/* calculate key0_5{0..23} */
k.key0 = (k.key0 ^ crc_32_tab[k0(5) ^ plaintext(5)]) << 8;
k.key0 = (k.key0 | k0(5)) & 0x00ffffff;
/* calculate key0_4{0..31} */
k.key0 = (k.key0 ^ crc_32_tab[k0(4) ^ plaintext(4)]) << 8;
k.key0 = (k.key0 | k0(4));
/* verify against known bytes */
if (!verify_key0(w, k.key0, 4, 12))
return;
if (compute_intermediate_internal_rep(w, &k) == 0)
key_found(w);
}
static void recurse_key1(struct worker *w, uint32_t current_idx)
{
if (current_idx == 3) {
compute_key0(w);
return;
}
uint32_t key1i = k1(current_idx);
uint32_t rhs_step1 = (key1i - 1) * MULTINV;
uint32_t rhs_step2 = (rhs_step1 - 1) * MULTINV;
uint8_t diff = msb(rhs_step2 - (mask_msb(k1(current_idx - 2))));
/*
* The difference between rhs_step2 and k1(current_idx - 2)
* (which has a valid msb) is a multiple (between 0 and 255,
* the value of lsb(key0)) of MULTINV.
*
* Use the lookup table with the difference of MSBs to find
* the actual multiple (the value of lsb(key0)). Also note
* that the difference between the MSBs has two possible
* values. For example:
*
* key1i: 0xa067359a
* rhs_step1: 0x69095385
* rhs_step2: 0xe50280b4
* diff: 0x12
* mask_msb(k1(current_idx - 2)): 0xd2000000
*
* 0xe50280b4 - 0xd2000000 = 0x130280b4 --> msb --> 0x13 (lsb0: 0xc6)
* 0xe50280b4 - 0xd2ffffff = 0x120280B5 --> msb --> 0x12 (lsb0: 0x1a, 0x70)
*
* LSBs to test: 0xc6, 0x1a, 0x70
*
* rhs_step1 - 0xc6 = 0x690952bf
* rhs_step1 - 0x1a = 0x6909536b
* rhs_step1 - 0x70 = 0x69095315
*
* 0x69095315 + 0x70 = (0xa067359a - 1) * 3645876429u
*
*/
for (uint8_t i = 0; i < w->lsbk0_count[diff]; ++i) {
uint32_t lsbkey0i = w->lsbk0_lookup[diff][i];
if (mask_msb(rhs_step1 - lsbkey0i) == mask_msb(k1(current_idx - 1))) {
w->key1_final[current_idx - 1] = rhs_step1 - lsbkey0i;
w->key0_final[current_idx] = lsbkey0i;
recurse_key1(w, current_idx - 1);
}
}
}
static void compute_key1(struct worker *w)
{
/* find matching msb, section 3.3 from Biham & Kocher */
for (uint32_t i = 0; i < pow2(24); ++i) {
const uint32_t key1_12_tmp = mask_msb(k1(12)) | i;
const uint32_t key1_11_tmp = (key1_12_tmp - 1) * MULTINV;
if (mask_msb(key1_11_tmp) == mask_msb(k1(11))) {
w->key1_final[12] = key1_12_tmp;
recurse_key1(w, 12);
}
}
}
static uint32_t compute_key1_msb(struct worker *w, uint32_t current_idx)
{
const uint32_t key2i = k2(current_idx);
const uint32_t key2im1 = k2(current_idx - 1);
return (key2i << 8) ^ crc_32_invtab[key2i >> 24] ^ key2im1;
}
static int recurse_key2(struct worker *w, uint32_t current_idx)
{
uint8_t key3im1;
uint8_t key3im2;
if (current_idx == 1) {
compute_key1(w);
return 0;
}
key3im1 = generate_key3(w, current_idx - 1);
key3im2 = generate_key3(w, current_idx - 2);
/* empty array before appending new keys */
key2_reset(w, current_idx - 1);
size_t s = key2r_compute_single(k2(current_idx),
key2_get_arr(w, current_idx - 1),
get_bits_15_2(w->bits_15_2, key3im1),
get_bits_15_2(w->bits_15_2, key3im2),
KEY2_MASK_8BITS);
key2_set_size(w, current_idx - 1, s);
assert(s <= 64);
key2_uniq(w, current_idx - 1);
for (size_t i = 0; i < key2_get_size(w, current_idx - 1); ++i) {
w->key2_final[current_idx - 1] = key2_get_key(w, current_idx - 1, i);
w->key1_final[current_idx] = compute_key1_msb(w, current_idx) << 24;
if (recurse_key2(w, current_idx - 1))
return -1;
}
return 0;
}
static int get_next_index(struct worker *w, size_t *i)
{
pthread_mutex_lock(w->mutex);
if (w->ptext->found ||
*w->next == w->ptext->key2_size) {
pthread_mutex_unlock(w->mutex);
return -1;
}
*i = (*w->next)++;
pthread_mutex_unlock(w->mutex);
return 0;
}
static void *worker(void *p)
{
struct worker *w = (struct worker *)p;
while (1) {
size_t next;
if (get_next_index(w, &next))
break; /* nothing more to do */
w->key2_final[12] = w->ptext->key2[next];
if (recurse_key2(w, 12)) {
w->worker_err_status = -1;
break;
}
}
return NULL;
}
static void dealloc_workers(struct list_head *head)
{
struct worker *w, *tmp;
list_for_each_entry_safe(w, tmp, head, workers) {
list_del(&w->workers);
free(w);
}
}
static int alloc_workers(struct zc_crk_ptext *ptext,
struct list_head *head,
pthread_mutex_t *mutex,
size_t *next,
long count)
{
for (long i = 0; i < count; ++i) {
struct worker *w = calloc(1, sizeof(struct worker));
if (!w) {
dealloc_workers(head);
return -1;
}
w->plaintext = ptext->plaintext;
w->ciphertext = ptext->ciphertext;
w->lsbk0_lookup = ptext->lsbk0_lookup;
w->lsbk0_count = ptext->lsbk0_count;
w->bits_15_2 = ptext->bits_15_2;
w->mutex = mutex;
w->next = next;
w->ptext = ptext;
list_add(&w->workers, head);
}
return 0;
}
ZC_EXPORT void zc_crk_ptext_force_threads(struct zc_crk_ptext *ptext, long w)
{
ptext->force_threads = w;
}
ZC_EXPORT int zc_crk_ptext_attack(struct zc_crk_ptext *ptext,
struct zc_key *out_key)
{
struct list_head head;
pthread_mutex_t mutex;
size_t next = 0;
struct worker *w;
int err;
pthread_mutex_init(&mutex, NULL);
INIT_LIST_HEAD(&head);
err = alloc_workers(ptext, &head, &mutex, &next,
threads_to_create(ptext->force_threads));
if (err)
goto end;
list_for_each_entry(w, &head, workers) {
/* best effort */
w->pthread_create_err = pthread_create(&w->id, NULL, worker, w);
if (w->pthread_create_err)
perror("pthread_create failed");
}
err = -1;
list_for_each_entry(w, &head, workers) {
if (w->pthread_create_err)
continue;
pthread_join(w->id, NULL);
pthread_mutex_lock(&mutex);
if (w->worker_err_status) {
err(ptext->ctx, "worker %p encountered a fatal error\n", w);
} else if (ptext->found && pthread_equal(ptext->found_by, w->id)) {
*out_key = w->inter_rep;
err = 0;
}
pthread_mutex_unlock(&mutex);
}
dealloc_workers(&head);
end:
pthread_mutex_destroy(&mutex);
return err;
}
ZC_EXPORT int zc_crk_ptext_find_internal_rep(const struct zc_key *start_key,
const uint8_t *ciphertext, size_t size,
struct zc_key *internal_rep)
{
struct zc_key k;
uint32_t i;
/* the cipher text also includes the 12 prepended bytes */
if (size < 12)
return -1;
i = size - 1;
k = *start_key;
do {
uint8_t p;
compute_one_intermediate_int_rep(ciphertext[i], &p, &k);
} while (i--);
*internal_rep = k;
return 0;
}
|