1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
/*
* zc - zip crack library
* Copyright (C) 2012-2018 Marc Ferland
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include "ptext_private.h"
#define KEY2_ARRAY_LEN (1 << 22)
static void generate_all_key2_bits_31_2(uint32_t *key2, const uint16_t *key2_bits_15_2)
{
uint32_t i, j;
for (i = 0; i < pow2(16); ++i)
for (j = 0; j < 64; ++j)
key2[i * 64 + j] = (i << 16) | key2_bits_15_2[j];
}
static uint32_t bits_1_0_key2i(uint32_t key2im1, uint32_t key2i)
{
uint32_t tmp = key2im1 ^ crc_32_invtab[msb(key2i)];
tmp = (tmp >> 8) & 0x3; /* keep only bit 9 and 8 */
return tmp;
}
static size_t generate_all_key2i_with_bits_1_0(uint32_t *key2i,
uint32_t key2i_frag,
const uint16_t *key2im1_bits_15_2)
{
const uint32_t key2im1_bits_31_10 = (key2i_frag << 8) ^ crc_32_invtab[key2i_frag >> 24];
const uint32_t key2im1_bits_15_10_rhs = key2im1_bits_31_10 & 0xfc00;
size_t total = 0;
for (int j = 0; j < 64; ++j) {
const uint32_t key2im1_bits_15_10_lhs = key2im1_bits_15_2[j] & 0xfc00;
/* the left and right hand side share 6 bits in position
[15..10]. See biham & kocher 3.1. */
if (key2im1_bits_15_10_rhs == key2im1_bits_15_10_lhs) {
uint32_t key2im1;
key2im1 = key2im1_bits_31_10 & 0xfffffc00;
key2im1 |= key2im1_bits_15_2[j];
key2i[total++] = key2i_frag | bits_1_0_key2i(key2im1, key2i_frag);
}
}
return total;
}
size_t key2r_compute_single(uint32_t key2i_plus_1,
uint32_t *key2i,
const uint16_t *key2i_bits_15_2,
const uint16_t *key2im1_bits_15_2,
uint32_t common_bits_mask)
{
const uint32_t key2i_bits31_8 = (key2i_plus_1 << 8) ^ crc_32_invtab[key2i_plus_1 >> 24];
const uint32_t key2i_bits15_10_rhs = key2i_bits31_8 & common_bits_mask;
size_t total = 0;
for (uint32_t i = 0; i < 64; ++i) {
const uint32_t key2i_bits15_10_lhs = key2i_bits_15_2[i] & common_bits_mask;
/* the left and right hand side share the same 6 bits in
position [15..10]. See biham & kocher 3.1. */
if (key2i_bits15_10_rhs == key2i_bits15_10_lhs) {
uint32_t key2i_frag;
/* save 22 most significant bits [31..10] */
key2i_frag = key2i_bits31_8 & 0xfffffc00;
/* save bits [15..2] with common 6 bits */
key2i_frag |= key2i_bits_15_2[i];
/* save bits [1..0] */
total += generate_all_key2i_with_bits_1_0(&key2i[total],
key2i_frag,
key2im1_bits_15_2);
}
}
return total;
}
static size_t key2r_compute_next_array(const uint32_t *key2i_plus_1,
size_t key2i_plus_1_size,
uint32_t *key2i,
const uint16_t *key2i_bits_15_2,
const uint16_t *key2im1_bits_15_2,
uint32_t common_bits_mask)
{
size_t total = 0;
for (size_t i = 0; i < key2i_plus_1_size; ++i)
total += key2r_compute_single(key2i_plus_1[i],
&key2i[total],
key2i_bits_15_2,
key2im1_bits_15_2,
common_bits_mask);
return total;
}
#define SWAP(x, y) do { typeof(x) SWAP = x; x = y; y = SWAP; } while (0)
ZC_EXPORT int zc_crk_ptext_key2_reduction(struct zc_crk_ptext *ptext)
{
uint8_t key3i, key3im1;
uint32_t *key2i, *key2ip1;
size_t key2i_size, key2ip1_size;
/* first gen key2 (key2ip1) */
key3i = generate_key3(ptext, ptext->text_size - 1);
key2ip1 = calloc(KEY2_ARRAY_LEN, sizeof(uint32_t));
if (!key2ip1)
return -1;
generate_all_key2_bits_31_2(key2ip1, get_bits_15_2(ptext->bits_15_2, key3i));
key2ip1_size = KEY2_ARRAY_LEN;
/* allocate space for second array (key2i) */
key2i = calloc(KEY2_ARRAY_LEN, sizeof(uint32_t));
if (!key2i) {
free(key2ip1);
return -1;
}
key2i_size = 0;
/* perform reduction */
const size_t start_index = ptext->text_size - 2;
for (size_t i = start_index; i >= 12; --i) {
key3i = generate_key3(ptext, i);
key3im1 = generate_key3(ptext, i - 1);
key2i_size = key2r_compute_next_array(key2ip1,
key2ip1_size,
key2i,
get_bits_15_2(ptext->bits_15_2, key3i),
get_bits_15_2(ptext->bits_15_2, key3im1),
i == start_index ? KEY2_MASK_6BITS : KEY2_MASK_8BITS);
uniq(key2i, &key2i_size);
SWAP(key2i, key2ip1);
SWAP(key2i_size, key2ip1_size);
}
/* note: we swapped key2i and key2i+1 */
/* resize final array */
ptext->key2 = realloc(key2ip1, key2ip1_size * sizeof(uint32_t));
ptext->key2_size = key2ip1_size;
free(key2i);
return 0;
}
|