File: element.hpp

package info (click to toggle)
libzeep 5.1.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 3,596 kB
  • sloc: cpp: 27,393; xml: 7,798; javascript: 180; sh: 37; makefile: 8
file content (726 lines) | stat: -rw-r--r-- 22,896 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
//          Copyright Maarten L. Hekkelman, 2019
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)

#pragma once

/// \file
/// Code for zeep::json::element, the JSON object in libzeep

#include <zeep/config.hpp>

#include <zeep/json/element_fwd.hpp>
#include <zeep/json/factory.hpp>
#include <zeep/json/to_element.hpp>
#include <zeep/json/from_element.hpp>
#include <zeep/json/serializer.hpp>
#include <zeep/json/iterator.hpp>

namespace zeep::json
{

class element
{
  public:
	using value_type = detail::value_type;

	using nullptr_type = std::nullptr_t;
	using object_type = std::map<std::string,element>;
	using array_type = std::vector<element>;
	using string_type = std::string;
	using int_type = int64_t;
	using float_type = double;
	using boolean_type = bool;

	using pointer = element*;
	using const_pointer = const element*;

	using difference_type = std::ptrdiff_t;
	using size_type = std::size_t;

    using initializer_list_t = std::initializer_list<detail::element_reference>;

	using reference = element&;
	using const_reference = const element&;

	template<typename E> friend class detail::iterator_impl;
	using iterator = detail::iterator_impl<element>;
	using const_iterator = detail::iterator_impl<const element>;

	template<typename Iterator> using iteration_proxy = detail::iteration_proxy<Iterator>;
	template<typename iterator> friend class detail::iteration_proxy_value;

    template<value_type> friend struct detail::factory;

  private:

	union element_data
	{
		object_type*	m_object;
		array_type*		m_array;
		string_type*	m_string;
		int64_t			m_int;
		double			m_float;
		bool			m_boolean;

		element_data() = default;
		element_data(bool v) noexcept : m_boolean(v) {}
		element_data(int64_t v) noexcept : m_int(v) {}
		element_data(double v) noexcept : m_float(v) {}
		element_data(value_type t)
		{
			switch (t)
			{
				case value_type::array:			m_array = create<array_type>(); 	break;
				case value_type::boolean:		m_boolean = false;					break;
				case value_type::null:			m_object = nullptr;					break;
				case value_type::number_float:	m_float = 0;						break;
				case value_type::number_int:	m_int = 0;							break;
				case value_type::object:		m_object = create<object_type>(); 	break;
				case value_type::string:		m_string = create<string_type>();	break;
			}
		}
		element_data(const object_type& v)		{ m_object = create<object_type>(v); }
		element_data(object_type&& v)			{ m_object = create<object_type>(std::move(v)); }
		element_data(const string_type& v)		{ m_string = create<string_type>(v); }
		element_data(string_type&& v)			{ m_string = create<string_type>(std::move(v)); }
		element_data(const array_type& v)		{ m_array = create<array_type>(v); }
		element_data(array_type&& v)			{ m_array = create<array_type>(std::move(v)); }

		void destroy(value_type t) noexcept
		{
			switch (t)
			{
				case value_type::object:
				{
					std::allocator<object_type> alloc;
					std::allocator_traits<decltype(alloc)>::destroy(alloc, m_object);
					std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_object, 1);
					break;
				}

				case value_type::array:
				{
					std::allocator<array_type> alloc;
					std::allocator_traits<decltype(alloc)>::destroy(alloc, m_array);
					std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_array, 1);
					break;
				}

				case value_type::string:
				{
					std::allocator<string_type> alloc;
					std::allocator_traits<decltype(alloc)>::destroy(alloc, m_string);
					std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_string, 1);
					break;
				}

				default:
					break;
			}
		}
	};

	template<typename T, typename... Args>
	static T* create(Args&&... args)
	{
		// return new T(args...);
        std::allocator<T> alloc;
        using AllocatorTraits = std::allocator_traits<std::allocator<T>>;

        auto deleter = [&](T * object)
        {
            AllocatorTraits::deallocate(alloc, object, 1);
        };

        std::unique_ptr<T, decltype(deleter)> object(AllocatorTraits::allocate(alloc, 1), deleter);
        assert(object != nullptr);
        AllocatorTraits::construct(alloc, object.get(), std::forward<Args>(args)...);
        return object.release();
	}

  public:

	/// empty constructor with a certain type
	element(value_type t);

	/// default constructor
	element(std::nullptr_t = nullptr);
	element(const element& j);
	element(element&& j);

	template<typename ElementRef, std::enable_if_t<std::is_same_v<ElementRef,detail::element_reference>, int> = 0>
	element(const ElementRef& r)
		: element(r.data())
	{
		validate();
	}

	template<typename T,
		typename U = typename std::remove_cv_t<typename std::remove_reference_t<T>>,
		std::enable_if_t<not std::is_same_v<U,element> and detail::is_compatible_type_v<T>, int> = 0>
	element(T&& v) noexcept(noexcept(element_serializer<U,void>::to_element(std::declval<element&>(), std::forward<T>(v))))
	{
		element_serializer<U,void>::to_element(*this, std::forward<T>(v));
	}
 
	element(initializer_list_t init);
	element(size_t cnt, const element& v);

	static element object();
	static element array();
	static element object(initializer_list_t init);
	static element array(initializer_list_t init);

	element& operator=(element j) noexcept(
        std::is_nothrow_move_constructible_v<value_type> and
        std::is_nothrow_move_assignable_v<value_type> and
        std::is_nothrow_move_constructible_v<element_data> and
        std::is_nothrow_move_assignable_v<element_data>);

	~element() noexcept;

	constexpr bool is_null() const noexcept						{ return m_type == value_type::null; }
	constexpr bool is_object() const noexcept					{ return m_type == value_type::object; }
	constexpr bool is_array() const noexcept					{ return m_type == value_type::array; }
	constexpr bool is_string() const noexcept					{ return m_type == value_type::string; }
	constexpr bool is_number() const noexcept					{ return is_number_int() or is_number_float(); }
	constexpr bool is_number_int() const noexcept				{ return m_type == value_type::number_int; }
	constexpr bool is_number_float() const noexcept				{ return m_type == value_type::number_float; }
	constexpr bool is_true() const noexcept						{ return is_boolean() and m_data.m_boolean == true; }
	constexpr bool is_false() const noexcept					{ return is_boolean() and m_data.m_boolean == false; }
	constexpr bool is_boolean() const noexcept					{ return m_type == value_type::boolean; }

	constexpr value_type type() const							{ return m_type; }
	std::string type_name() const;

	explicit operator bool() const noexcept;

	// access to object elements
	reference at(const typename object_type::key_type& key);
	const_reference at(const typename object_type::key_type& key) const;

	reference operator[](const typename object_type::key_type& key);
	const_reference operator[](const typename object_type::key_type& key) const;

	// access to array elements
	reference at(size_t index);
	const_reference at(size_t index) const;

	reference operator[](size_t index);
	const_reference operator[](size_t index) const;

	iterator begin() noexcept									{ return iterator(this); }
	iterator end() noexcept										{ return iterator(this, -1); }

	const_iterator begin() const noexcept						{ return cbegin(); }
	const_iterator end() const noexcept							{ return cend(); }

	const_iterator cbegin() const noexcept						{ return const_iterator(this); }
	const_iterator cend() const noexcept						{ return const_iterator(this, -1); }

	reference front()											{ return *begin(); }
	const_reference front() const								{ return *cbegin(); }

	reference back()											{ auto tmp = end(); --tmp; return *tmp; }
	const_reference back() const								{ auto tmp = cend(); --tmp; return *tmp; }

  private:
	template<typename... Args>
	iterator insert_iterator(const_iterator pos, Args... args)
	{
		iterator result(this);
		auto insert_pos = std::distance(m_data.m_array->begin(), pos.m_it.m_array_it);
		m_data.m_array->insert(m_data.m_array->begin() + insert_pos, std::forward<Args>(args)...);
		result.m_it.m_array_it = m_data.m_array->begin() + insert_pos;

		return result;
	}
  public:

	void clear() noexcept;
	iterator insert(const_iterator pos, const element& val);
	iterator insert(const_iterator pos, element&& val)
	{
		return insert(pos, val);
	}
	iterator insert(const_iterator pos, size_type cnt, const element& val);
	iterator insert(const_iterator pos, const_iterator first, const_iterator last);
	iterator insert(const_iterator pos, initializer_list_t lst);
	void insert(const_iterator first, const_iterator last);

	void push_back(element&& val);
	void push_back(const element& val);

	template<typename... Args>
	std::pair<iterator,bool> emplace(Args&&... args)
	{
		if (is_null())
		{
			m_type = value_type::object;
			m_data = value_type::object;
		}
		else if (not is_object())
			throw std::runtime_error("Cannot emplace with json value of type " + type_name());
		
		validate();

		auto r = m_data.m_object->emplace(std::forward<Args>(args)...);
		auto i = begin();
		i.m_it.m_object_it = r.first;

		return { i, r.second };
	}

	template<typename... Args>
	void emplace_back(Args&&... args)
	{
		if (not (is_null() or is_array()))
			throw std::runtime_error("Cannot use emplace_back with " + type_name());
		
		if (is_null())
		{
			m_type = value_type::array;
			m_data = value_type::array;
		}

		m_data.m_array->emplace_back(std::forward<Args>(args)...);
	}

	template<typename Iterator,
		typename std::enable_if_t<std::is_same_v<Iterator, iterator> or std::is_same_v<Iterator, const_iterator>, int> = 0>
		Iterator erase(Iterator pos)
	{
		if (pos.m_obj != this)
			throw std::runtime_error("Invalid iterator");
		
		auto result = end();

		switch (m_type)
		{
			case value_type::array:
				result.m_it.m_array_it = m_data.m_array->erase(pos.m_it.m_array_it);
				break;

			case value_type::object:
				result.m_it.m_object_it = m_data.m_object->erase(pos.m_it.m_object_it);
				break;

			case value_type::null:
				throw std::runtime_error("Cannot erase in null values");

			default:
				if (pos.m_it.m_p != 0)
					throw std::runtime_error("Iterator out of range");

				if (m_type == value_type::string)
				{
					std::allocator<string_type> alloc;
					std::allocator_traits<decltype(alloc)>::destroy(alloc, m_data.m_string);
					std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_data.m_string, 1);
					m_data.m_string = nullptr;
				}

				m_type = value_type::null;
				break;
		}

		return result;
	}

	template<typename Iterator,
		typename std::enable_if_t<std::is_same_v<Iterator, iterator> or std::is_same_v<Iterator, const_iterator>, int> = 0>
		Iterator erase(Iterator first, Iterator last)
	{
		if (first.m_obj != this or last.m_obj != this)
			throw std::runtime_error("Invalid iterator");
		
		auto result = end();

		switch (m_type)
		{
			case value_type::array:
				result.m_it.m_array_it = m_data.m_array->erase(first.m_it.m_array_it, last.m_it.m_array_it);
				break;

			case value_type::object:
				result.m_it.m_object_it = m_data.m_object->erase(first.m_it.m_object_it, last.m_it.m_object_it);
				break;

			case value_type::null:
				throw std::runtime_error("Cannot erase in null values");

			default:
				if (first.m_it.m_p != 0 or last.m_it.m_p != 0)
					throw std::runtime_error("Iterator out of range");

				if (m_type == value_type::string)
				{
					std::allocator<string_type> alloc;
					std::allocator_traits<decltype(alloc)>::destroy(alloc, m_data.m_string);
					std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_data.m_string, 1);
					m_data.m_string = nullptr;
				}

				m_type = value_type::null;
				break;
		}

		return result;
	}

	size_type erase(const typename object_type::key_type& key)
	{
		if (is_object())
			return m_data.m_object->erase(key);
		throw std::runtime_error("Cannot use erase() with " + type_name());
	}

	void erase(const size_type index)
	{
		if (is_array())
		{
			if (index >= size())
				throw std::runtime_error("Index out of range");
			m_data.m_array->erase(m_data.m_array->begin() + static_cast<difference_type>(index));
		}
		else
			throw std::runtime_error("Cannot use erase() with " + type_name());
	}

	void swap(reference other) noexcept (
        std::is_nothrow_move_constructible_v<value_type> and
        std::is_nothrow_move_assignable_v<value_type> and
        std::is_nothrow_move_constructible_v<element_data> and
        std::is_nothrow_move_assignable_v<element_data>
    )
    {
        std::swap(m_type, other.m_type);
        std::swap(m_data, other.m_data);
        validate();
    }

    template<typename T>
    const_iterator find(T&& key) const
    {
        auto result = cend();

        if (is_object())
            result.m_it.m_object_it = m_data.m_object->find(std::forward<T>(key));
		else if (is_array())
			result.m_it.m_array_it = std::find(m_data.m_array->begin(), m_data.m_array->end(), std::forward<T>(key));

        return result;
    }

	bool contains(element test) const;

	// TODO: no reverse iterators yet

	iteration_proxy<iterator> items() noexcept
	{
		return iteration_proxy<iterator>(*this);
	}

	iteration_proxy<const_iterator> items() const noexcept
	{
		return iteration_proxy<const_iterator>(*this);
	}

	bool empty() const;
	size_t size() const;
	size_t max_size() const noexcept;

	friend bool operator==(const_reference& lhs, const_reference& rhs);

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend bool operator==(const_reference& lhs, const T& rhs)
	{
		return lhs == element(rhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend bool operator==(const T& lhs, const_reference& rhs)
	{
		return element(lhs) == rhs;
	}

	friend bool operator!=(const_reference& lhs, const_reference& rhs);

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend bool operator!=(const_reference& lhs, const T& rhs)
	{
		return lhs != element(rhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend bool operator!=(const T& rhs, const_reference& lhs)
	{
		return element(lhs) == rhs;
	}

	friend bool operator<(const_reference& lhs, const_reference& rhs);

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend bool operator<(const_reference& lhs, const T& rhs)
	{
		return lhs < element(rhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend bool operator<(const T& lhs, const_reference& rhs)
	{
		return element(lhs) < rhs;
	}

	friend bool operator<=(const_reference& lhs, const_reference& rhs)
	{
		return not (rhs < lhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend bool operator<=(const_reference& lhs, const T& rhs)
	{
		return lhs <= element(rhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend bool operator<=(const T& lhs, const_reference& rhs)
	{
		return element(lhs) <= rhs;
	}

	friend bool operator>(const_reference& lhs, const_reference& rhs)
	{
		return not (lhs <= rhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend bool operator>(const_reference& lhs, const T& rhs)
	{
		return lhs > element(rhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend bool operator>(const T& lhs, const_reference& rhs)
	{
		return element(lhs) > rhs;
	}

	friend bool operator>=(const_reference& lhs, const_reference& rhs)
	{
		return not (lhs < rhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend bool operator>=(const_reference& lhs, const T& rhs)
	{
		return lhs >= element(rhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend bool operator>=(const T& lhs, const_reference& rhs)
	{
		return element(lhs) >= rhs;
	}

	// arithmetic operators

	element& operator-();

	friend element operator+(const_reference& lhs, const_reference& rhs);

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend element operator+(const_reference& lhs, const T& rhs)
	{
		return lhs + element(rhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend element operator+(const T& lhs, const_reference& rhs)
	{
		return element(lhs) + rhs;
	}

	friend element operator-(const_reference& lhs, const_reference& rhs);

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend element operator-(const_reference& lhs, const T& rhs)
	{
		return lhs - element(rhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend element operator-(const T& lhs, const_reference& rhs)
	{
		return element(lhs) - rhs;
	}

	friend element operator*(const_reference& lhs, const_reference& rhs);

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend element operator*(const_reference& lhs, const T& rhs)
	{
		return lhs * element(rhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend element operator*(const T& lhs, const_reference& rhs)
	{
		return element(lhs) * rhs;
	}

	friend element operator/(const_reference& lhs, const_reference& rhs);

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend element operator/(const_reference& lhs, const T& rhs)
	{
		return lhs / element(rhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend element operator/(const T& lhs, const_reference& rhs)
	{
		return element(lhs) / rhs;
	}

	friend element operator%(const_reference& lhs, const_reference& rhs);

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend element operator%(const_reference& lhs, const T& rhs)
	{
		return lhs % element(rhs);
	}

	template<typename T, std::enable_if_t<std::is_scalar_v<T>, int> = 0>
	friend element operator%(const T& lhs, const_reference& rhs)
	{
		return element(lhs) % rhs;
	}

private:

	// get_impl_ptr
	object_type* get_impl_ptr(object_type*) noexcept								{ return is_object() ? m_data.m_object : nullptr; }
	constexpr const object_type* get_impl_ptr(const object_type*) const noexcept	{ return is_object() ? m_data.m_object : nullptr; }
	array_type* get_impl_ptr(array_type*) noexcept									{ return is_array() ? m_data.m_array : nullptr; }
	constexpr const array_type* get_impl_ptr(const array_type*) const noexcept		{ return is_array() ? m_data.m_array : nullptr; }
	string_type* get_impl_ptr(string_type*) noexcept								{ return is_string() ? m_data.m_string : nullptr; }
	constexpr const string_type* get_impl_ptr(const string_type*) const noexcept	{ return is_string() ? m_data.m_string : nullptr; }
	int_type* get_impl_ptr(int_type*) noexcept										{ return is_number_int() ? &m_data.m_int : nullptr; }
	constexpr const int_type* get_impl_ptr(const int_type*) const noexcept			{ return is_number_int() ? &m_data.m_int : nullptr; }
	float_type* get_impl_ptr(float_type*) noexcept									{ return is_number_float() ? &m_data.m_float : nullptr; }
	constexpr const float_type* get_impl_ptr(const float_type*) const noexcept		{ return is_number_float() ? &m_data.m_float : nullptr; }
	boolean_type* get_impl_ptr(boolean_type*) noexcept								{ return is_boolean() ? &m_data.m_boolean : nullptr; }
	constexpr const boolean_type* get_impl_ptr(const boolean_type*) const noexcept	{ return is_boolean() ? &m_data.m_boolean : nullptr; }


public:

	// access to data
	// these return a pointer to the internal storage
	template<typename P, typename std::enable_if_t<std::is_pointer_v<P>, int> = 0>
	auto get_ptr() noexcept -> decltype(std::declval<element&>().get_impl_ptr(std::declval<P>()))
	{
		return get_impl_ptr(static_cast<P>(nullptr));
	}

	template<typename P, typename std::enable_if_t<std::is_pointer_v<P> and std::is_const_v<typename std::remove_pointer_t<P>>, int> = 0>
	constexpr auto get_ptr() const noexcept -> decltype(std::declval<element&>().get_impl_ptr(std::declval<P>()))
	{
		return get_impl_ptr(static_cast<P>(nullptr));
	}

	template<typename T,
		typename U = typename std::remove_cv_t<typename std::remove_reference_t<T>>,
		std::enable_if_t<detail::is_compatible_type_v<T>, int> = 0>
	T as() const noexcept(noexcept(element_serializer<U>::from_element(std::declval<const element&>(), std::declval<U&>())))
	{
		static_assert(std::is_default_constructible_v<U>, "Type must be default constructible to use with get()");

		U ret = {};
		if (not is_null())
			element_serializer<U>::from_element(*this, ret);
		return ret;
	}

	friend std::ostream& operator<<(std::ostream& os, const element& v);
	friend void serialize(std::ostream& os, const element& data);
	// friend void serialize(std::ostream& os, const element& data, int indent, int level = 0);

private:

	void validate() const
	{
        assert(m_type != value_type::object or m_data.m_object != nullptr);
        assert(m_type != value_type::array or m_data.m_array != nullptr);
        assert(m_type != value_type::string or m_data.m_string != nullptr);
	}

  public:
	value_type		m_type = value_type::null;
	element_data	m_data = {};
};

template<>
std::string element::as<std::string>() const;

template<>
bool element::as<bool>() const;

namespace detail
{

class element_reference
{
  public:
	element_reference(element&& value)
		: m_owned(std::move(value)), m_reference(&m_owned), m_rvalue(true) {}

	element_reference(const element& value)
		: m_reference(const_cast<element*>(&value)), m_rvalue(false) {}
	
	element_reference(std::initializer_list<element_reference> init)
		: m_owned(init), m_reference(&m_owned), m_rvalue(true) {}
	
    template <typename... Args, std::enable_if_t<std::is_constructible<element, Args...>::value, int> = 0>
    element_reference(Args&& ... args)
        : m_owned(std::forward<Args>(args)...), m_reference(&m_owned), m_rvalue(true) {}

    element_reference(element_reference&&) = default;
    element_reference(const element_reference&) = delete;
    element_reference& operator=(const element_reference&) = delete;
    element_reference& operator=(element_reference&&) = delete;
    ~element_reference() = default;

    element data() const
    {
        if (m_rvalue)
            return std::move(*m_reference);
        return *m_reference;
    }

    element const& operator*() const
    {
        return *static_cast<element const*>(m_reference);
    }

    element const* operator->() const
    {
        return static_cast<element const*>(m_reference);
    }

  private:
	element m_owned;
	element* m_reference = nullptr;
	bool m_rvalue;
};

} // detail

// working around a nuisance in g++ < 9: default for parameter init = {} is not accepted
inline element element::object()	{ return element::object({}); }
inline element element::array()		{ return element::array({}); }

} // zeep::json