1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
// Copyright Maarten L. Hekkelman, 2014-2022
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#pragma once
/*! \file zeep/value-serializer.hpp
\brief File containing the common serialization code in libzeep
Serialization in libzeep is used by both the XML and the JSON sub libraries.
Code that is common is found here.
*/
#include <zeep/config.hpp>
#include <regex>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/date_time/gregorian/gregorian.hpp>
#include <zeep/exception.hpp>
namespace zeep
{
// --------------------------------------------------------------------
/// \brief A template boilerplate for conversion of basic types to or
/// from strings.
///
/// Each specialization should provide a static to_string and a from_string
/// method as well as a type_name method. This type_name is used in e.g.
/// constructing WSDL files.
template<typename T, typename = void>
struct value_serializer;
template<>
struct value_serializer<bool>
{
static constexpr const char* type_name() { return "xsd:boolean"; }
static std::string to_string(bool value) { return value ? "true" : "false"; }
static bool from_string(const std::string& value) { return value == "true" or value == "1" or value == "yes"; }
};
template<>
struct value_serializer<std::string>
{
static constexpr const char* type_name() { return "xsd:string"; }
static std::string to_string(const std::string& value) { return value; }
static std::string from_string(const std::string& value){ return value; }
};
template<>
struct value_serializer<int8_t>
{
static constexpr const char* type_name() { return "xsd:byte"; }
static std::string to_string(int8_t value) { return std::to_string(value); }
static int8_t from_string(const std::string& value) { return static_cast<int8_t>(std::stoi(value)); }
};
template<>
struct value_serializer<uint8_t>
{
static constexpr const char* type_name() { return "xsd:unsignedByte"; }
static std::string to_string(uint8_t value) { return std::to_string(value); }
static uint8_t from_string(const std::string& value) { return static_cast<uint8_t>(std::stoul(value)); }
};
template<>
struct value_serializer<int16_t>
{
static constexpr const char* type_name() { return "xsd:short"; }
static std::string to_string(int16_t value) { return std::to_string(value); }
static int16_t from_string(const std::string& value) { return static_cast<int16_t>(std::stoi(value)); }
};
template<>
struct value_serializer<uint16_t>
{
static constexpr const char* type_name() { return "xsd:unsignedShort"; }
static std::string to_string(uint16_t value) { return std::to_string(value); }
static uint16_t from_string(const std::string& value) { return static_cast<uint16_t>(std::stoul(value)); }
};
template<>
struct value_serializer<int32_t>
{
static constexpr const char* type_name() { return "xsd:int"; }
static std::string to_string(int32_t value) { return std::to_string(value); }
static int32_t from_string(const std::string& value) { return std::stoi(value); }
};
template<>
struct value_serializer<uint32_t>
{
static constexpr const char* type_name() { return "xsd:unsignedInt"; }
static std::string to_string(uint32_t value) { return std::to_string(value); }
static uint32_t from_string(const std::string& value) { return static_cast<uint32_t>(std::stoul(value)); }
};
template<>
struct value_serializer<int64_t>
{
static constexpr const char* type_name() { return "xsd:long"; }
static std::string to_string(int64_t value) { return std::to_string(value); }
static int64_t from_string(const std::string& value) { return static_cast<int64_t>(std::stoll(value)); }
};
template<>
struct value_serializer<uint64_t>
{
static constexpr const char* type_name() { return "xsd:unsignedLong"; }
static std::string to_string(uint64_t value) { return std::to_string(value); }
static uint64_t from_string(const std::string& value) { return static_cast<uint64_t>(std::stoull(value)); }
};
template<>
struct value_serializer<float>
{
static constexpr const char* type_name() { return "xsd:float"; }
// static std::string to_string(float value) { return std::to_string(value); }
static std::string to_string(float value)
{
std::ostringstream s;
s << value;
return s.str();
}
static float from_string(const std::string& value) { return std::stof(value); }
};
template<>
struct value_serializer<double>
{
static constexpr const char* type_name() { return "xsd:double"; }
// static std::string to_string(double value) { return std::to_string(value); }
static std::string to_string(double value)
{
std::ostringstream s;
s << value;
return s.str();
}
static double from_string(const std::string& value) { return std::stod(value); }
};
/// \brief value_serializer for enum values
///
/// This class is used to (de-)serialize enum values. To map enum
/// values to a string you should use the singleton instance
/// accessible through instance() and then call the operator()
/// members assinging each of the enum values with their respective
/// string.
///
/// A recent addition is the init() call to initialize the instance
template<typename T>
struct value_serializer<T, std::enable_if_t<std::is_enum_v<T>>>
{
std::string m_type_name;
using value_map_type = std::map<T,std::string>;
using value_map_value_type = typename value_map_type::value_type;
value_map_type m_value_map;
/// \brief Initialize a new instance of value_serializer for this enum, with name and a set of name/value pairs
static void init(const char* name, std::initializer_list<value_map_value_type> values)
{
instance(name).m_value_map = value_map_type(values);
}
/// \brief Initialize a new anonymous instance of value_serializer for this enum with a set of name/value pairs
static void init(std::initializer_list<value_map_value_type> values)
{
instance().m_value_map = value_map_type(values);
}
static value_serializer& instance(const char* name = nullptr) {
static value_serializer s_instance;
if (name and s_instance.m_type_name.empty())
s_instance.m_type_name = name;
return s_instance;
}
value_serializer& operator()(T v, const std::string& name)
{
m_value_map[v] = name;
return *this;
}
value_serializer& operator()(const std::string& name, T v)
{
m_value_map[v] = name;
return *this;
}
static const char* type_name()
{
return instance().m_type_name;
}
static std::string to_string(T value)
{
return instance().m_value_map[value];
}
static T from_string(const std::string& value)
{
T result = {};
for (auto& t: instance().m_value_map)
if (t.second == value)
{
result = t.first;
break;
}
return result;
}
static bool empty()
{
return instance().m_value_map.empty();
}
};
// --------------------------------------------------------------------
// date/time support
/// \brief to_string/from_string for boost::posix_time::ptime
/// boost::posix_time::ptime values are always assumed to be UTC
template<>
struct value_serializer<boost::posix_time::ptime>
{
static constexpr const char* type_name() { return "xsd:dateTime"; }
/// to_string the boost::posix_time::ptime as YYYY-MM-DDThh:mm:ssZ (zero UTC offset)
static std::string to_string(const boost::posix_time::ptime& v)
{
return boost::posix_time::to_iso_extended_string(v).append("Z");
}
/// from_string according to ISO8601 rules.
/// If Zulu time is specified, then the parsed xsd:dateTime is returned.
/// If an UTC offset is present, then the offset is subtracted from the xsd:dateTime, this yields UTC.
/// If no UTC offset is present, then the xsd:dateTime is assumed to be local time and converted to UTC.
static boost::posix_time::ptime from_string(const std::string& s)
{
// We accept 3 general formats:
// 1: date fields separated with dashes, time fields separated with colons, eg. 2013-02-17T15:25:20,502104+01:00
// 2: date fields not separated, time fields separated with colons, eg. 20130217T15:25:20,502104+01:00
// 3: date fields not separated, time fields not separated, eg. 20130217T152520,502104+01:00
// Apart from the separators, the 3 regexes are basically the same, i.e. they have the same fields
// Note: std::regex is threadsafe, so we can declare these statically
// Format 1:
// ^(-?\d{4})-(\d{2})-(\d{2})T(\d{2})(:(\d{2})(:(\d{2})([.,](\d+))?)?)?((Z)|([-+])(\d{2})(:(\d{2}))?)?$
// ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^
// | | | | | | | | | | || | | | |
// | | | | | | | | | | || | | | [16] UTC minutes offset
// | | | | | | | | | | || | | [15] have UTC minutes offset?
// | | | | | | | | | | || | [14] UTC hour offset
// | | | | | | | | | | || [13] UTC offset sign
// | | | | | | | | | | |[12] Zulu time
// | | | | | | | | | | [11] have time zone?
// | | | | | | | | | [10] fractional seconds
// | | | | | | | | [9] have fractional seconds
// | | | | | | | [8] seconds
// | | | | | | [7] have seconds?
// | | | | | [6] minutes
// | | | | [5] have minutes?
// | | | [4] hours
// | | [3] day
// | [2] month
// [1] year
static std::regex re1("^(-?\\d{4})-(\\d{2})-(\\d{2})T(\\d{2})(:(\\d{2})(:(\\d{2})([.,](\\d+))?)?)?((Z)|([-+])(\\d{2})(:(\\d{2}))?)?$");
// Format 2:
// ^(-?\d{4})(\d{2})(\d{2})T(\d{2})(:(\d{2})(:(\d{2})([.,]\d+)?)?)?((Z)|([-+])(\d{2})(:(\d{2}))?)?$
static std::regex re2("^(-?\\d{4})(\\d{2})(\\d{2})T(\\d{2})(:(\\d{2})(:(\\d{2})([.,]\\d+)?)?)?((Z)|([-+])(\\d{2})(:(\\d{2}))?)?$");
// Format 3:
// ^(-?\d{4})(\d{2})(\d{2})T(\d{2})((\d{2})((\d{2})([.,]\d+)?)?)?((Z)|([-+])(\d{2})(:(\d{2}))?)?$
static std::regex re3("^(-?\\d{4})(\\d{2})(\\d{2})T(\\d{2})((\\d{2})((\\d{2})([.,]\\d+)?)?)?((Z)|([-+])(\\d{2})(:(\\d{2}))?)?$");
static const int f_year = 1;
static const int f_month = 2;
static const int f_day = 3;
static const int f_hours = 4;
static const int f_have_minutes = 5;
static const int f_minutes = 6;
static const int f_have_seconds = 7;
static const int f_seconds = 8;
static const int f_have_frac = 9;
static const int f_frac = 10;
static const int f_have_tz = 11;
static const int f_zulu = 12;
static const int f_offs_sign = 13;
static const int f_offs_hours = 14;
static const int f_have_offs_minutes = 15;
static const int f_offs_minutes = 16;
std::smatch m;
if (not std::regex_match(s, m, re1)) {
if (not std::regex_match(s, m, re2)) {
if (not std::regex_match(s, m, re3)) {
throw exception("Bad dateTime format");
}
}
}
boost::gregorian::date d(
static_cast<uint16_t>(std::stoi(m[f_year]))
, static_cast<uint16_t>(std::stoi(m[f_month]))
, static_cast<uint16_t>(std::stoi(m[f_day]))
);
int hours = std::stoi(m[f_hours]);
int minutes = 0, seconds = 0;
if (m.length(f_have_minutes)) {
minutes = std::stoi(m[f_minutes]);
if (m.length(f_have_seconds)) {
seconds = std::stoi(m[f_seconds]);
}
}
boost::posix_time::time_duration t(hours, minutes, seconds);
if (m.length(f_have_frac)) {
double frac = std::stod("0." + m[f_frac].str());
t += boost::posix_time::microseconds(static_cast<int64_t>((frac + .5) * 1e6));
}
boost::posix_time::ptime result = boost::posix_time::ptime(d, t);
if (m.length(f_have_tz)) {
if (not m.length(f_zulu)) {
std::string sign = m[f_offs_sign];
hours = std::stoi(m[f_offs_hours]);
minutes = 0;
if (m.length(f_have_offs_minutes)) {
minutes = std::stoi(m[f_offs_minutes]);
}
boost::posix_time::time_duration offs(hours, minutes, 0);
if (sign == "+") {
result -= offs;
} else {
result += offs;
}
}
} else {
// Boost has no clear way of instantiating the *current* timezone, so
// it's not possible to convert from local to UTC, using boost::local_time classes
// For now, settle on using mktime...
std::tm tm = boost::posix_time::to_tm(result);
tm.tm_isdst = -1;
std::time_t t2 = mktime(&tm);
result = boost::posix_time::from_time_t(t2);
}
return result;
}
};
/// \brief to_string/from_string for boost::gregorian::date
/// boost::gregorian::date values are assumed to be floating, i.e. we don't accept timezone info in dates
template<>
struct value_serializer<boost::gregorian::date>
{
static constexpr const char* type_name() { return "xsd:date"; }
/// to_string the boost::gregorian::date as YYYY-MM-DD
static std::string to_string(const boost::gregorian::date& v)
{
return boost::gregorian::to_iso_extended_string(v);
}
/// from_string boost::gregorian::date according to ISO8601 rules, but without timezone.
static boost::gregorian::date from_string(const std::string& s)
{
// We accept 2 general formats:
// 1: date fields separated with dashes, eg. 2013-02-17
// 2: date fields not separated, eg. 20130217
// Apart from the separators, the 2 regexes are basically the same, i.e. they have the same fields
// Note: std::regex is threadsafe, so we can declare these statically
// Format 1:
// ^(-?\d{4})-(\d{2})-(\d{2})$
// ^ ^ ^
// | | |
// | | |
// | | [3] day
// | [2] month
// [1] year
static std::regex re1("^(-?\\d{4})-(\\d{2})-(\\d{2})$");
// Format 2:
// ^(-?\d{4})(\d{2})(\d{2})$
static std::regex re2("^(-?\\d{4})(\\d{2})(\\d{2})$");
static const int f_year = 1;
static const int f_month = 2;
static const int f_day = 3;
std::smatch m;
if (not std::regex_match(s, m, re1)) {
if (not std::regex_match(s, m, re2)) {
throw exception("Bad date format");
}
}
return boost::gregorian::date(
static_cast<uint16_t>(std::stoi(m[f_year]))
, static_cast<uint16_t>(std::stoi(m[f_month]))
, static_cast<uint16_t>(std::stoi(m[f_day]))
);
}
};
/// \brief to_string/from_string for boost::posix_time::time_duration
/// boost::posix_time::time_duration values are assumed to be floating, i.e. we don't accept timezone info in times
template<>
struct value_serializer<boost::posix_time::time_duration>
{
static constexpr const char* type_name() { return "xsd:time"; }
/// to_string the boost::posix_time::time_duration as hh:mm:ss,ffffff
static std::string to_string(const boost::posix_time::time_duration& v)
{
return boost::posix_time::to_simple_string(v);
}
/// from_string boost::posix_time::time_duration according to ISO8601 rules, but without timezone.
static boost::posix_time::time_duration from_string(const std::string& s)
{
// We accept 2 general formats:
// 1: time fields separated with colons, eg. 15:25:20,502104
// 2: time fields not separated, eg. 152520,502104
// Apart from the separators, the 2 regexes are basically the same, i.e. they have the same fields
// Note: std::regex is threadsafe, so we can declare these statically
// Format 1:
// ^(\d{2})(:(\d{2})(:(\d{2})([.,](\d+))?)?)?$
// ^ ^ ^ ^ ^ ^ ^
// | | | | | | |
// | | | | | | [7] fractional seconds
// | | | | | [6] have fractional seconds
// | | | | [5] seconds
// | | | [4] have seconds?
// | | [3] minutes
// | [2] have minutes?
// [1] hours
static std::regex re1("^(\\d{2})(:(\\d{2})(:(\\d{2})([.,](\\d+))?)?)?$");
// Format 2:
// ^(\d{2})((\d{2})((\d{2})([.,](\d+))?)?)?$
static std::regex re2("^(\\d{2})((\\d{2})((\\d{2})([.,](\\d+))?)?)?$");
static const int f_hours = 1;
static const int f_have_minutes = 2;
static const int f_minutes = 3;
static const int f_have_seconds = 4;
static const int f_seconds = 5;
static const int f_have_frac = 6;
static const int f_frac = 7;
std::smatch m;
if (not std::regex_match(s, m, re1)) {
if (not std::regex_match(s, m, re2)) {
throw exception("Bad time format");
}
}
int hours = std::stoi(m[f_hours]);
int minutes = 0, seconds = 0;
if (m.length(f_have_minutes)) {
minutes = std::stoi(m[f_minutes]);
if (m.length(f_have_seconds)) {
seconds = std::stoi(m[f_seconds]);
}
}
boost::posix_time::time_duration result = boost::posix_time::time_duration(hours, minutes, seconds);
if (m.length(f_have_frac)) {
double frac = std::stod(std::string(".").append(std::string(m[f_frac])));
result += boost::posix_time::microseconds(static_cast<int64_t>((frac + .5) * 1e6));
}
return result;
}
};
} // namespace zeep
|