1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
/*
array.c: simple operations on arrays mod n
Copyright (C) 2007, 2008, David Harvey
This file is part of the zn_poly library (version 0.8).
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) version 3 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "zn_poly_internal.h"
int zn_array_cmp(const ulong* op1, const ulong* op2, size_t len)
{
for (; len > 0; len--)
if (*op1++ != *op2++)
return 1;
return 0;
}
void zn_array_copy(ulong* res, const ulong* op, size_t len)
{
for (; len > 0; len--)
*res++ = *op++;
}
void zn_array_neg(ulong* res, const ulong* op, size_t len, const zn_mod_t mod)
{
for (; len > 0; len--)
*res++ = zn_mod_neg(*op++, mod);
}
/*
Same as zn_array_scalar_mul, but:
* always uses REDC reduction (requires modulus is odd);
* requires that residues fit into half a word.
*/
#define _zn_array_scalar_mul_redc_v1 \
ZNP__zn_array_scalar_mul_redc_v1
void _zn_array_scalar_mul_redc_v1(ulong* res, const ulong* op, size_t len,
ulong x, const zn_mod_t mod)
{
ZNP_ASSERT(mod->bits <= ULONG_BITS/2);
ZNP_ASSERT(mod->n & 1);
ZNP_ASSERT(x < mod->n);
for (; len; len--, op++, res++)
*res = zn_mod_reduce_redc((*op) * x, mod);
}
/*
Same as zn_array_scalar_mul, but:
* always uses REDC reduction (requires modulus is odd);
* requires that modulus is slim.
*/
#define _zn_array_scalar_mul_redc_v2 \
ZNP__zn_array_scalar_mul_redc_v2
void _zn_array_scalar_mul_redc_v2(ulong* res, const ulong* op, size_t len,
ulong x, const zn_mod_t mod)
{
ZNP_ASSERT(zn_mod_is_slim(mod));
ZNP_ASSERT(mod->n & 1);
ZNP_ASSERT(x < mod->n);
for (; len; len--, op++, res++)
{
ulong hi, lo;
ZNP_MUL_WIDE(hi, lo, *op, x);
*res = zn_mod_reduce_wide_redc_slim(hi, lo, mod);
}
}
/*
Same as zn_array_scalar_mul, but:
* always uses REDC reduction (requires modulus is odd).
*/
#define _zn_array_scalar_mul_redc_v3 \
ZNP__zn_array_scalar_mul_redc_v3
void _zn_array_scalar_mul_redc_v3(ulong* res, const ulong* op, size_t len,
ulong x, const zn_mod_t mod)
{
ZNP_ASSERT(mod->n & 1);
ZNP_ASSERT(x < mod->n);
for (; len; len--, op++, res++)
{
ulong hi, lo;
ZNP_MUL_WIDE(hi, lo, *op, x);
*res = zn_mod_reduce_wide_redc(hi, lo, mod);
}
}
/*
Same as zn_array_scalar_mul, but always uses REDC reduction (requires that
modulus is odd).
Dispatches to one of the three versions above, depending on modulus size.
*/
#define _zn_array_scalar_mul_redc \
ZNP__zn_array_scalar_mul_redc
void _zn_array_scalar_mul_redc(ulong* res, const ulong* op, size_t len,
ulong x, const zn_mod_t mod)
{
ZNP_ASSERT(mod->n & 1);
ZNP_ASSERT(x < mod->n);
if (mod->bits <= ULONG_BITS/2)
_zn_array_scalar_mul_redc_v1(res, op, len, x, mod);
else if (zn_mod_is_slim(mod))
_zn_array_scalar_mul_redc_v2(res, op, len, x, mod);
else
_zn_array_scalar_mul_redc_v3(res, op, len, x, mod);
}
/*
Same as zn_array_scalar_mul, but:
* always uses plain reduction;
* requires that residues fit into half a word.
*/
#define _zn_array_scalar_mul_plain_v1 \
ZNP__zn_array_scalar_mul_plain_v1
void _zn_array_scalar_mul_plain_v1(ulong* res, const ulong* op, size_t len,
ulong x, const zn_mod_t mod)
{
ZNP_ASSERT(mod->bits <= ULONG_BITS/2);
ZNP_ASSERT(x < mod->n);
for (; len; len--, op++, res++)
*res = zn_mod_reduce((*op) * x, mod);
}
/*
Same as zn_array_scalar_mul, but:
* always uses plain reduction.
*/
#define _zn_array_scalar_mul_plain_v2 \
ZNP__zn_array_scalar_mul_plain_v2
void _zn_array_scalar_mul_plain_v2(ulong* res, const ulong* op, size_t len,
ulong x, const zn_mod_t mod)
{
ZNP_ASSERT(x < mod->n);
for (; len; len--, op++, res++)
{
ulong hi, lo;
ZNP_MUL_WIDE(hi, lo, *op, x);
*res = zn_mod_reduce_wide(hi, lo, mod);
}
}
/*
Same as zn_array_scalar_mul, but always uses plain reduction.
Dispatches to one of the versions above, depending on modulus size.
*/
#define _zn_array_scalar_mul_plain \
ZNP__zn_array_scalar_mul_plain
void _zn_array_scalar_mul_plain(ulong* res, const ulong* op, size_t len,
ulong x, const zn_mod_t mod)
{
ZNP_ASSERT(x < mod->n);
if (mod->bits <= ULONG_BITS/2)
_zn_array_scalar_mul_plain_v1(res, op, len, x, mod);
else
_zn_array_scalar_mul_plain_v2(res, op, len, x, mod);
}
void _zn_array_scalar_mul(ulong* res, const ulong* op, size_t len,
ulong x, int redc, const zn_mod_t mod)
{
if (redc)
_zn_array_scalar_mul_redc(res, op, len, x, mod);
else
_zn_array_scalar_mul_plain(res, op, len, x, mod);
}
void zn_array_scalar_mul(ulong* res, const ulong* op, size_t len,
ulong x, const zn_mod_t mod)
{
ZNP_ASSERT(x < mod->n);
// Do plain reduction if the vector is really short, or if the modulus
// is even (in which case REDC reduction is not available).
if (len < 5 || !(mod->n & 1))
{
_zn_array_scalar_mul_plain(res, op, len, x, mod);
}
else
{
// modulus is odd, and vector is not too short, so we can go faster
// by adjusting the multiplier and using REDC reduction
_zn_array_scalar_mul_redc(res, op, len,
zn_mod_mul_redc(x, mod->B2, mod), mod);
}
}
void zn_array_sub(ulong* res, const ulong* op1, const ulong* op2, size_t len,
const zn_mod_t mod)
{
if (zn_mod_is_slim(mod))
for (; len; len--)
*res++ = zn_mod_sub_slim(*op1++, *op2++, mod);
else
for (; len; len--)
*res++ = zn_mod_sub(*op1++, *op2++, mod);
}
/*
Computes
res = sign1*op1 + sign2*op2,
where sign1 = -1 if neg1 is set, otherwise +1; ditto for sign2.
op1 and op2 are arrays of length _len_.
res is a staggered array, entries separated by _skip_.
Return value is res + skip*len, i.e. points beyond the written array.
*/
ulong* zn_skip_array_signed_add(ulong* res, ptrdiff_t skip, size_t len,
const ulong* op1, int neg1,
const ulong* op2, int neg2,
const zn_mod_t mod)
{
if (zn_mod_is_slim(mod))
{
// slim version
if (neg1)
{
if (neg2)
// res = -(op1 + op2)
for (; len > 0; len--, res += skip, op1++, op2++)
*res = zn_mod_neg(zn_mod_add_slim(*op1, *op2, mod), mod);
else
// res = op2 - op1
for (; len > 0; len--, res += skip, op1++, op2++)
*res = zn_mod_sub_slim(*op2, *op1, mod);
}
else
{
if (neg2)
// res = op1 - op2
for (; len > 0; len--, res += skip, op1++, op2++)
*res = zn_mod_sub_slim(*op1, *op2, mod);
else
// res = op1 + op2
for (; len > 0; len--, res += skip, op1++, op2++)
*res = zn_mod_add_slim(*op1, *op2, mod);
}
}
else
{
// non-slim version
if (neg1)
{
if (neg2)
// res = -(op1 + op2)
for (; len > 0; len--, res += skip, op1++, op2++)
*res = zn_mod_neg(zn_mod_add(*op1, *op2, mod), mod);
else
// res = op2 - op1
for (; len > 0; len--, res += skip, op1++, op2++)
*res = zn_mod_sub(*op2, *op1, mod);
}
else
{
if (neg2)
// res = op1 - op2
for (; len > 0; len--, res += skip, op1++, op2++)
*res = zn_mod_sub(*op1, *op2, mod);
else
// res = op1 + op2
for (; len > 0; len--, res += skip, op1++, op2++)
*res = zn_mod_add(*op1, *op2, mod);
}
}
return res;
}
// end of file ****************************************************************
|