1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
|
/*
zn_poly_internal.h: main header file #included internally by zn_poly
modules
Copyright (C) 2007, 2008, David Harvey
This file is part of the zn_poly library (version 0.9).
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) version 3 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
IMPORTANT NOTE!!!!!!
Everything in this file is internal, and may change incompatibly in
future versions of zn_poly. You have been warned!
*/
#ifndef ZN_POLY_INTERNAL_H
#define ZN_POLY_INTERNAL_H
#include <gmp.h>
#include <stddef.h>
#include <stdio.h>
#include "zn_poly.h"
#ifdef __cplusplus
extern "C" {
#endif
#ifdef ZNP_USE_FLINT
// use FLINT integer multiplication
#include <FLINT/mpn_extras.h>
#define ZNP_mpn_mul F_mpn_mul
#else
// use GMP integer multiplication
#define ZNP_mpn_mul mpn_mul
#endif
/*
Executes "stuff", and checks that it returns 0. Usage is e.g.:
ZNP_ASSERT_NOCARRY (mpn_add_n (z, x, y, 42));
This is used where we want the test suite to check that the return value
is zero, but the production version should skip the check, and we don't
want to stuff around with temporaries everywhere.
*/
#define ZNP_ASSERT_NOCARRY(stuff) \
do { \
mp_limb_t __xyz_cy; \
__xyz_cy = (stuff); \
ZNP_ASSERT (__xyz_cy == 0); \
} while (0)
/*
For integers a >= 1 and b >= 1, returns ceil(a / b).
*/
#define CEIL_DIV(a, b) ((((a) - 1) / (b)) + 1)
/*
For integers a >= 1 and 0 <= r < ULONG BITS, returns ceil(a / 2^r).
*/
#define CEIL_DIV_2EXP(a, r) ((((a) - 1) >> (r)) + 1)
#define ZNP_MIN(aaa, bbb) (((aaa) < (bbb)) ? (aaa) : (bbb))
#define ZNP_MAX(aaa, bbb) (((aaa) > (bbb)) ? (aaa) : (bbb))
/*
Estimate of the L1 cache size, in bytes.
If this is a bit on the small side, it's probably not a big deal.
If it's on the big side, that might start to seriously degrade performance.
*/
#define ZNP_CACHE_SIZE 32768
/*
Returns ceil(log2(x)).
x must be >= 1.
*/
#define ceil_lg \
ZNP_ceil_lg
int ceil_lg (ulong x);
/*
Returns floor(log2(x)).
Returns -1 for x == 0.
*/
#define floor_lg \
ZNP_floor_lg
int
floor_lg (ulong x);
/*
res := abs(op1 - op2).
Returns 1 if op1 - op2 is negative, else zero.
*/
#define signed_mpn_sub_n \
ZNP_signed_mpn_sub_n
ZNP_INLINE int
signed_mpn_sub_n (mp_limb_t* res, const mp_limb_t* op1, const mp_limb_t* op2,
size_t n)
{
if (mpn_cmp (op1, op2, n) >= 0)
{
mpn_sub_n (res, op1, op2, n);
return 0;
}
else
{
mpn_sub_n (res, op2, op1, n);
return 1;
}
}
/*
The ZNP_FASTALLOC and ZNP_FASTFREE macros are used for allocating memory
which is taken off the stack if the request is small enough, or off the
heap if not.
Example usage:
ZNP_FASTALLOC (stuff, int, 100, n);
This does two things. It allocates an array of 100 ints on the stack.
It also declares a pointer "int* stuff", which points to a block of ints
of length n. If n <= 100, the block will be the one just allocated on the
stack. If n > 100, the block will be found using malloc.
Then afterwards, you need to do:
ZNP_FASTFREE (stuff);
This will call free() if the block was originally taken off the heap.
*/
#define ZNP_FASTALLOC(ptr, type, reserve, request) \
size_t __FASTALLOC_request_##ptr = (request); \
type* ptr; \
type __FASTALLOC_##ptr [reserve]; \
if (__FASTALLOC_request_##ptr <= (reserve)) \
ptr = __FASTALLOC_##ptr; \
else \
ptr = (type*) malloc (sizeof (type) * __FASTALLOC_request_##ptr);
#define ZNP_FASTFREE(ptr) \
if (ptr != __FASTALLOC_##ptr) \
free (ptr);
extern size_t
ZNP_mpn_smp_kara_thresh;
extern size_t
ZNP_mpn_mulmid_fallback_thresh;
/*
Stores tuning data for moduli of a specific bitsize.
*/
#define tuning_info_t \
ZNP_tuning_info_t
typedef struct
{
// thresholds for array multiplication
size_t mul_KS2_thresh; // KS1 -> KS2 threshold
size_t mul_KS4_thresh; // KS2 -> KS4 threshold
size_t mul_fft_thresh; // KS4 -> fft threshold
// as above, but for squaring
size_t sqr_KS2_thresh;
size_t sqr_KS4_thresh;
size_t sqr_fft_thresh;
// as above, but for middle products
size_t mulmid_KS2_thresh;
size_t mulmid_KS4_thresh;
size_t mulmid_fft_thresh;
// for negacyclic multiplications, switch from KS to Nussbaumer FFT
// when length reaches 2^nuss_mul_thresh
unsigned nuss_mul_thresh;
// ditto for nussbaumer squaring
unsigned nuss_sqr_thresh;
}
tuning_info_t;
/*
Global array of tuning_info_t's, one for each bitsize.
*/
#define tuning_info \
ZNP_tuning_info
extern tuning_info_t tuning_info[];
/* ============================================================================
stuff from pack.c
============================================================================ */
/*
Computes
res := 2^k * ( op[0] + op[s]*2^b + ... + op[(n-1)*s]*2^((n-1)*b) ).
Assumes each op[i] satisfies 0 <= op[i] < 2^b.
Must have 0 < b < 3 * ULONG_BITS.
If r == 0, then exactly
ceil((k + n * b) / GMP_NUMB_BITS)
limbs are written. Otherwise, the output will be zero-padded up to exactly
r limbs, which must be at least the above number of limbs.
*/
#define zn_array_pack \
ZNP_zn_array_pack
void
zn_array_pack (mp_limb_t* res, const ulong* op, size_t n, ptrdiff_t s,
unsigned b, unsigned k, size_t r);
/*
Let op be an integer of the form
2^k * (a[0] + a[1]*2^b + ... + a[n-1]*2^((n-1)*b)) + junk,
where 0 <= a[i] < 2^b for each i, and where 0 <= junk < 2^k.
This function reads off the a[i]'s and stores them at res. Each output
coefficient occupies exactly ceil(b / ULONG_BITS) words. The input
should be exactly ceil((k + n * b) / GMP_NUMB_BITS) limbs long.
Must have 0 < b < 3 * ULONG_BITS.
*/
#define zn_array_unpack \
ZNP_zn_array_unpack
void
zn_array_unpack (ulong* res, const mp_limb_t* op, size_t n, unsigned b,
unsigned k);
/*
Same as zn_array_unpack, but adds an assertion to check that the unpacking
routine will not read beyond the first r limbs of op.
*/
#define zn_array_unpack_SAFE(res, op, n, b, k, r) \
do \
{ \
ZNP_ASSERT((n) * (b) + (k) <= (r) * GMP_NUMB_BITS); \
zn_array_unpack(res, op, n, b, k); \
} while (0)
/* ============================================================================
stuff from mul.c
============================================================================ */
/*
Identical to zn_array_mul(), except for the fastred flag.
If fastred is cleared, the output is the same as for zn_array_mul().
If fastred is set, the routine uses the fastest modular reduction strategy
available for the given parameters. The result will come out divided by a
fudge factor, which can be recovered via _zn_array_mul_fudge().
*/
#define _zn_array_mul \
ZNP__zn_array_mul
void
_zn_array_mul (ulong* res,
const ulong* op1, size_t n1,
const ulong* op2, size_t n2,
int fastred, const zn_mod_t mod);
#define _zn_array_mul_fudge \
ZNP__zn_array_mul_fudge
ulong
_zn_array_mul_fudge (size_t n1, size_t n2, int sqr, const zn_mod_t mod);
/* ============================================================================
stuff from ks_support.c
============================================================================ */
/*
Sets res[i * s] = reduction modulo mod of the i-th entry of op,
for 0 <= i < n. Each entry of op is w ulongs.
If the redc flag is set, the results are divided by -B mod m
(only allowed if the modulus is odd).
Must have 1 <= w <= 3.
*/
#define array_reduce \
ZNP_array_reduce
void
array_reduce (ulong* res, ptrdiff_t s, const ulong* op, size_t n, unsigned w,
int redc, const zn_mod_t mod);
/*
This is a helper function for the variants of KS that evaluate at
"reciprocal" evaluation points like 2^(-N); it implements essentially the
algorithm of section 3.2 of [Har07], plus reductions mod n.
It accepts two integers X and Y written in base M = 2^b, where
1 <= b <= 3 * ULONG_BITS / 2. It assumes that
X = a[0] + a[1]*M + ... + a[n-1]*M^(n-1),
Y = a[n-1] + a[n-2]*M + ... + a[0]*M^(n-1),
where each a[i] is two "digits" long, and where the high digit of a[i]
is at most M-2 (i.e. may not equal M-1). It reconstructs the a[i],
reduces them mod m, and stores the results in an array.
The input is supplied as follows. X is in op1, Y is in op2. They are both
arrays of values that are b bits wide, where b <= 3 * ULONG_BITS / 2.
Each value takes up one ulong if b <= ULONG_BITS, otherwise two ulongs.
There are n + 1 such values in each array (i.e. each array consists of
(n + 1) * ceil(b / ULONG_BITS) ulongs).
The output (n ulongs) is written to the array res, with consecutive
outputs separated by s ulongs.
mod describes the modulus m.
If the redc flag is set, the modular reductions are performed using REDC,
i.e. the result contain an extra factor of -1/B mod m (where
B = 2^ULONG_BITS).
*/
#define zn_array_recover_reduce \
ZNP_zn_array_recover_reduce
void
zn_array_recover_reduce (ulong* res, ptrdiff_t s, const ulong* op1,
const ulong* op2, size_t n, unsigned b, int redc,
const zn_mod_t mod);
/* ============================================================================
stuff from mul_ks.c
============================================================================ */
/*
These are the same as zn_array_mul(). They use four different types of
Kronecker substitution. They automatically use a faster algorithm for
squaring (if the inputs are identical buffers).
Aliasing of all operands allowed.
Must have n1 >= n2 >= 1.
If the redc flag is set, the outputs will be divided by -B mod m.
(Only allowed if the modulus is odd.)
*/
#define zn_array_mul_KS1 \
ZNP_zn_array_mul_KS1
void
zn_array_mul_KS1 (ulong* res,
const ulong* op1, size_t n1,
const ulong* op2, size_t n2,
int redc, const zn_mod_t mod);
#define zn_array_mul_KS2 \
ZNP_zn_array_mul_KS2
void
zn_array_mul_KS2 (ulong* res,
const ulong* op1, size_t n1,
const ulong* op2, size_t n2,
int redc, const zn_mod_t mod);
#define zn_array_mul_KS3 \
ZNP_zn_array_mul_KS3
void
zn_array_mul_KS3 (ulong* res,
const ulong* op1, size_t n1,
const ulong* op2, size_t n2,
int redc, const zn_mod_t mod);
#define zn_array_mul_KS4 \
ZNP_zn_array_mul_KS4
void
zn_array_mul_KS4 (ulong* res,
const ulong* op1, size_t n1,
const ulong* op2, size_t n2,
int redc, const zn_mod_t mod);
/* ============================================================================
stuff from mulmid_ks.c
============================================================================ */
/*
These are the same as zn_array_mulmid(). They use four different types of
Kronecker substitution.
Aliasing of all operands allowed.
Must have n1 >= n2 >= 1.
If the redc flag is set, the outputs will be divided by -B mod m.
(Only allowed if the modulus is odd.)
*/
#define zn_array_mulmid_KS1 \
ZNP_zn_array_mulmid_KS1
void
zn_array_mulmid_KS1 (ulong* res,
const ulong* op1, size_t n1,
const ulong* op2, size_t n2,
int redc, const zn_mod_t mod);
#define zn_array_mulmid_KS2 \
ZNP_zn_array_mulmid_KS2
void
zn_array_mulmid_KS2 (ulong* res,
const ulong* op1, size_t n1,
const ulong* op2, size_t n2,
int redc, const zn_mod_t mod);
#define zn_array_mulmid_KS3 \
ZNP_zn_array_mulmid_KS3
void
zn_array_mulmid_KS3 (ulong* res,
const ulong* op1, size_t n1,
const ulong* op2, size_t n2,
int redc, const zn_mod_t mod);
#define zn_array_mulmid_KS4 \
ZNP_zn_array_mulmid_KS4
void
zn_array_mulmid_KS4 (ulong* res,
const ulong* op1, size_t n1,
const ulong* op2, size_t n2,
int redc, const zn_mod_t mod);
/* ============================================================================
pmf_t stuff
============================================================================ */
/*
Let R = Z/mZ. A pmf_t ("pmf" = "polynomial modulo fermat") represents an
element of S = R[Y]/(Y^M + 1). This is used as the coefficient ring in
the Schonhage/Nussbaumer FFT routines.
It's an array of ulongs of length M + 1, where M = 2^lgM is a power of two.
(The value M is not stored, the caller needs to keep track of it.)
The first value in the array is an integer b called the "bias" of the
representation.
The remaining M values are coefficients a_0, ..., a_{M-1}.
These together represent the polynomial
Y^b (a_0 + a_1 Y + ... + a_{M-1} Y^{M-1}).
Note that elements of S do not have a unique representation in this form;
in fact they have one possible representation for each value of b in
[0, 2M). (By allowing nonzero bias, we get more efficient in-place FFT
butterflies.) The stored bias value need not be in [0, 2M), but it is
interpreted mod 2M.
Currently the values a_i are always normalised into [0, m). Later we might
drop that restriction to obtain faster butterflies...
*/
#define pmf_t \
ZNP_pmf_t
typedef ulong* pmf_t;
#define pmf_const_t \
ZNP_pmf_const_t
typedef const ulong* pmf_const_t;
/*
op := op * x
*/
#define pmf_scalar_mul \
ZNP_pmf_scalar_mul
ZNP_INLINE void
pmf_scalar_mul (pmf_t op, ulong M, ulong x, const zn_mod_t mod)
{
zn_array_scalar_mul (op + 1, op + 1, M, x, mod);
}
/*
op := 0, with bias reset to zero too
*/
#define pmf_zero \
ZNP_pmf_zero
ZNP_INLINE void
pmf_zero (pmf_t op, ulong M)
{
for (M++; M > 0; M--)
*op++ = 0;
}
/*
op := op / 2
Modulus must be odd.
*/
#define pmf_divby2 \
ZNP_pmf_divby2
ZNP_INLINE void
pmf_divby2 (pmf_t op, ulong M, const zn_mod_t mod)
{
ZNP_ASSERT (mod->m & 1);
for (op++; M > 0; M--, op++)
*op = zn_mod_divby2 (*op, mod);
}
/*
res := op
*/
#define pmf_set \
ZNP_pmf_set
ZNP_INLINE void
pmf_set (pmf_t res, pmf_t op, ulong M)
{
for (M++; M > 0; M--)
*res++ = *op++;
}
/*
op := Y^r * op
*/
#define pmf_rotate \
ZNP_pmf_rotate
ZNP_INLINE void
pmf_rotate (pmf_t op, ulong r)
{
op[0] += r;
}
/*
op1 := op2 + op1
op2 := op2 - op1
Inputs must be [0, m); outputs will be in [0, m).
*/
#define pmf_bfly \
ZNP_pmf_bfly
void
pmf_bfly (pmf_t op1, pmf_t op2, ulong M, const zn_mod_t mod);
/*
op1 := op1 + op2
Inputs must be [0, m); outputs will be in [0, m).
*/
#define pmf_add \
ZNP_pmf_add
void
pmf_add (pmf_t op1, const pmf_t op2, ulong M, const zn_mod_t mod);
/*
op1 := op1 - op2
Inputs must be [0, m); outputs will be in [0, m).
*/
#define pmf_sub \
ZNP_pmf_sub
void
pmf_sub (pmf_t op1, const pmf_t op2, ulong M, const zn_mod_t mod);
/*
These functions are exported just for profiling purposes:
*/
#define zn_array_bfly_inplace \
ZNP_zn_array_bfly_inplace
void
zn_array_bfly_inplace (ulong* op1, ulong* op2, ulong n, const zn_mod_t mod);
#define zn_array_add_inplace \
ZNP_zn_array_add_inplace
void
zn_array_add_inplace (ulong* op1, const ulong* op2, ulong n,
const zn_mod_t mod);
#define zn_array_sub_inplace \
ZNP_zn_array_sub_inplace
void
zn_array_sub_inplace (ulong* op1, const ulong* op2, ulong n,
const zn_mod_t mod);
/* ============================================================================
pmfvec_t stuff
============================================================================ */
/*
A pmfvec_t stores a vector of length K = 2^lgK of elements of S.
Used to represent an element of S[Z]/(Z^K + 1) or S[Z]/(Z^K - 1), or some
other quotient like that.
The functions pmfvec_init/clear should be used to allocate storage for
this type. Also sometimes fake ones get created temporarily to point at
sub-vectors of existing vectors.
*/
#define pmfvec_struct \
ZNP_pmfvec_struct
typedef struct
{
// points to the first coefficient
pmf_t data;
// number of coefficients
ulong K;
unsigned lgK; // lg2(K)
// length of coefficients (see definition of pmf_t)
ulong M;
unsigned lgM; // lg2(M)
// distance between adjacent coefficients, measured in ulongs
// (this is at least M + 1, might be more)
ptrdiff_t skip;
// associated modulus
const zn_mod_struct* mod;
}
pmfvec_struct;
#define pmfvec_t \
ZNP_pmfvec_t
typedef pmfvec_struct pmfvec_t[1];
/*
Checks that vec1 and vec2 have compatible data,
i.e. have the same K, M, mod.
*/
#define pmfvec_compatible \
ZNP_pmfvec_compatible
ZNP_INLINE int
pmfvec_compatible (const pmfvec_t vec1, const pmfvec_t vec2)
{
return (vec1->K == vec2->K) && (vec1->M == vec2->M) &&
(vec1->mod == vec2->mod);
}
/*
Initialises res with given parameters, allocates memory.
*/
#define pmfvec_init \
ZNP_pmfvec_init
void
pmfvec_init (pmfvec_t res, unsigned lgK, ptrdiff_t skip, unsigned lgM,
const zn_mod_t mod);
/*
Initialises res in preparation for a Nussbaumer multiplication of
length 2^lgL.
*/
#define pmfvec_init_nuss \
ZNP_pmfvec_init_nuss
void
pmfvec_init_nuss (pmfvec_t res, unsigned lgL, const zn_mod_t mod);
/*
Destroys op, frees all associated memory.
*/
#define pmfvec_clear \
ZNP_pmfvec_clear
void
pmfvec_clear (pmfvec_t op);
/*
res := op
*/
#define pmfvec_set \
ZNP_pmfvec_set
void
pmfvec_set (pmfvec_t res, const pmfvec_t op);
/*
Multiplies first n coefficients of op by x.
*/
#define pmfvec_scalar_mul \
ZNP_pmfvec_scalar_mul
void
pmfvec_scalar_mul (pmfvec_t op, ulong n, ulong x);
/*
Multiplies pointwise the first n coefficients of op1 and op2, puts result
in res.
It's okay for res to alias op1 or op2. The modulus must be odd.
If the special_first_two flag is set, the routine assumes that the first
two coefficients are of length only M/2 (this is the typical situation
after performing the FFT), and multiplies them more quickly accordingly.
The routine automatically selects KS or Nussbaumer multiplication
depending on the modulus bitsize and on M.
The output will be divided by a fudge factor, which can be retrieved
via pmfvec_mul_fudge().
Automatically uses specialised squaring algorithm if the inputs are the
same pmfvec_t object.
*/
#define pmfvec_mul \
ZNP_pmfvec_mul
void
pmfvec_mul (pmfvec_t res, const pmfvec_t op1, const pmfvec_t op2, ulong n,
int special_first_two);
#define pmfvec_mul_fudge \
ZNP_pmfvec_mul_fudge
ulong
pmfvec_mul_fudge (unsigned lgM, int sqr, const zn_mod_t mod);
/*
Modifies the op->data and op->skip to make it look as if the first
coefficient is the one at index n - 1, and the last coefficient is
the one at index 0. Calling this function again undoes the reversal.
Note that this function *must* be called a second time before calling
pmfvec_clear(), so that free() is not called on the wrong pointer!
*/
#define pmfvec_reverse \
ZNP_pmfvec_reverse
void
pmfvec_reverse (pmfvec_t op, ulong n);
/* ============================================================================
stuff in pmfvec_fft.c
============================================================================ */
/*
---------- forward FFTs ----------
The functions
pmfvec_fft()
pmfvec_fft_basecase()
pmfvec_fft_dc()
pmfvec_fft_huge()
operate on a pmfvec_t, and compute inplace the FFT:
b_k = Y^{t k'} \sum_{i=0}^{K-1} Y^{2 M i k' / K} a_i,
where 0 <= t < 2M / K is a twist parameter. The notation k' indicates the
length lgK bit-reversal of k.
All except the "basecase" version have an n parameter; they only compute the
first n outputs. The remaining buffers are used in intermediate steps, and
contain junk at the end. For "basecase", all K outputs are computed.
All except the "basecase" version have a z parameter; they assume that the
input coefficients are zero from index z and beyond. They never read from
those coefficients. For "basecase", all the inputs are used.
The four versions use different algorithms as follows:
* pmfvec_fft(): main entry point, delegates to one of the other routines
based on the size of the transform.
* pmfvec_fft_basecase(): low-overhead iterative FFT, no truncation logic.
* pmfvec_fft_dc(): divide-and-conquer. It handles the top layer of
butterflies, and then recurses into the two halves. This is intended
for fairly small transforms where locality is not a big issue. The
algorithm implemented here is essentially van der Hoeven's "truncated
Fourier transform" [vdH04], [vdH05].
* pmfvec_fft_huge(): intended for large transforms, where locality
is an issue. It factors the FFT into U = 2^lgU transforms of length
T = 2^lgT followed by T transforms of length U, where K = T * U. This
is done recursively until we're in L1 cache (or as small as possible),
at which point we switch to pmfvec_fft_dc().
The algorithm is straightforward, but I believe it to be new. It is
simultaneously a generalisation of van der Hoeven's truncated Fourier
transform and Bailey's FFT algorithm [Bai89]. (I used something
similar in the ZmodF_poly module in FLINT.)
---------- inverse FFTs ----------
The functions
pmfvec_ifft()
pmfvec_ifft_basecase()
pmfvec_ifft_dc()
pmfvec_ifft_huge()
compute the corresponding inverse FFT. They are a little more complicated
than the FFTs owing to the truncation.
Let a_i and b_k be as described above for the FFTs. The IFFT functions
take as input the array
b_{0'}, b_{1'}, ..., b_{(n-1)'}, K*a_n, K*a_{n+1}, ..., K*a_{K-1},
for some 0 <= n <= K. If the fwd flag is zero, then the output of the IFFT
routine is:
K*a_0, K*a_1, ..., K*a_{n-1}
followed by K - n junk coefficients. If the fwd flag is set, then we
require that 0 <= n <= K - 1, and the output is
K*a_0, K*a_1, ..., K*a_{n-1}, b_n
followed by K - n - 1 junk coefficients; i.e. it also computes one
coefficient of the *forward* FFT.
The "basecase" version has no n parameter, and assumes that n = K. Here
the routine becomes the (non-truncated) IFFT as usually understood, with
inputs in bit-reversed order and outputs in normal order.
All except the "basecase" version have a z parameter (with z >= n); they
assume that the input coefficients are zero from index z and beyond. They
never read from those coefficients. For the "basecase" version, all of the
inputs are used.
The four versions use different algorithms as follows:
* pmfvec_ifft(): main entry point, delegates to one of the other routines
based on the size of the transform.
* pmfvec_ifft_basecase(): low-overhead iterative IFFT, no truncation
logic.
* pmfvec_ifft_dc(): divide-and-conquer. It recurses into the two halves,
and handles the top layer of butterflies. This is intended for fairly
small transforms where locality is not a big issue. The algorithm
implemented here is essentially van der Hoeven's beautiful "truncated
inverse Fourier transform".
* pmfvec_ifft_huge(): intended for large transforms, where locality
is an issue. It factors the FFT into U = 2^lgU transforms of length
T = 2^lgT and T transforms of length U, where K = T * U. This is done
recursively until we're in L1 cache (if possible), at which point we
switch to pmfvec_ifft_dc().
The algorithm is not as simple as the FFT version; it is necessary
to alternate between "row" and "column" transforms in a slightly
complicated way. I believe the algorithm to be new.
---------- transposed forward and inverse FFTs ----------
The functions
pmfvec_tpfft_basecase()
pmfvec_tpfft_dc()
pmfvec_tpfft_huge()
pmfvec_tpfft()
are *transposed* versions of the corresponding pmfvec_fft() routines. This
means that if the FFT computes an S-linear map from S^z to S^n, the
transposed version computes the transpose map from S^n to S^z.
Similarly, the functions
pmfvec_tpifft_basecase()
pmfvec_tpifft_dc()
pmfvec_tpifft_huge()
pmfvec_tpifft()
are transposed versions of the IFFT routines. If the IFFT computes an
S-linear map from S^z to S^(n + fwd), the transposed version computes the
transpose map from S^(n + fwd) to S^z.
The algorithms are transposed essentially by reversing them, and
transposing every step of the algorithm; see for example [BLS03] for how
this is done. We don't have comments in these routines; see the comments
on the corresponding FFT/IFFT routines.
---------- notes for all the above functions ----------
These functions all perform O(n * lgK + K) operations in S (an "operation"
being an addition/subtraction/copy with possibly an implied rotation by a
power of Y). In particular the running time varies fairly smoothly with
n instead of jumping with K.
For all four algorithms, the "dc" version is essentially equivalent to the
"huge" version with lgT = 1.
These functions are not thread-safe. Apart from modifying the input inplace,
they also temporarily modify the pmfvec_t structs themselves.
Our approach to improving cache performance is certainly not ideal. The
main problem is that we can get address conflicts, especially since
everything gets spread out by powers of two. Mitigating factors:
associativity in the cache; the extra bias word scrambles the addresses
somewhat; when the transforms gets large, so do the coefficients, so we
don't expect to fit that many in cache anyway.
*/
#define pmfvec_fft \
ZNP_pmfvec_fft
void
pmfvec_fft (pmfvec_t op, ulong n, ulong z, ulong t);
#define pmfvec_fft_huge \
ZNP_pmfvec_fft_huge
void
pmfvec_fft_huge (pmfvec_t op, unsigned lgT, ulong n, ulong z, ulong t);
#define pmfvec_fft_dc \
ZNP_pmfvec_fft_dc
void
pmfvec_fft_dc (pmfvec_t op, ulong n, ulong z, ulong t);
#define pmfvec_fft_basecase \
ZNP_pmfvec_fft_basecase
void
pmfvec_fft_basecase (pmfvec_t op, ulong t);
#define pmfvec_ifft \
ZNP_pmfvec_ifft
void
pmfvec_ifft (pmfvec_t op, ulong n, int fwd, ulong z, ulong t);
#define pmfvec_ifft_huge \
ZNP_pmfvec_ifft_huge
void
pmfvec_ifft_huge (pmfvec_t op, unsigned lgT, ulong n, int fwd, ulong z,
ulong t);
#define pmfvec_ifft_dc \
ZNP_pmfvec_ifft_dc
void
pmfvec_ifft_dc (pmfvec_t op, ulong n, int fwd, ulong z, ulong t);
#define pmfvec_ifft_basecase \
ZNP_pmfvec_ifft_basecase
void
pmfvec_ifft_basecase (pmfvec_t op, ulong t);
#define pmfvec_tpfft \
ZNP_pmfvec_tpfft
void
pmfvec_tpfft (pmfvec_t op, ulong n, ulong z, ulong t);
#define pmfvec_tpfft_huge \
ZNP_pmfvec_tpfft_huge
void
pmfvec_tpfft_huge (pmfvec_t op, unsigned lgT, ulong n, ulong z, ulong t);
#define pmfvec_tpfft_dc \
ZNP_pmfvec_tpfft_dc
void
pmfvec_tpfft_dc (pmfvec_t op, ulong n, ulong z, ulong t);
#define pmfvec_tpfft_basecase \
ZNP_pmfvec_tpfft_basecase
void
pmfvec_tpfft_basecase (pmfvec_t op, ulong t);
#define pmfvec_tpifft \
ZNP_pmfvec_tpifft
void
pmfvec_tpifft (pmfvec_t op, ulong n, int fwd, ulong z, ulong t);
#define pmfvec_tpifft_huge \
ZNP_pmfvec_tpifft_huge
void
pmfvec_tpifft_huge (pmfvec_t op, unsigned lgT, ulong n, int fwd, ulong z,
ulong t);
#define pmfvec_tpifft_dc \
ZNP_pmfvec_tpifft_dc
void
pmfvec_tpifft_dc (pmfvec_t op, ulong n, int fwd, ulong z, ulong t);
#define pmfvec_tpifft_basecase \
ZNP_pmfvec_tpifft_basecase
void
pmfvec_tpifft_basecase (pmfvec_t op, ulong t);
/* ============================================================================
stuff in array.c
============================================================================ */
/*
Computes
res = sign1*op1 + sign2*op2,
where sign1 = -1 if neg1 is set, otherwise +1; ditto for sign2.
op1 and op2 are arrays of length n.
res is a staggered array, entries separated by s.
Return value is res + s*n, i.e. points beyond the written array.
*/
#define zn_skip_array_signed_add \
ZNP_zn_skip_array_signed_add
ulong*
zn_skip_array_signed_add (ulong* res, ptrdiff_t skip, size_t n,
const ulong* op1, int neg1,
const ulong* op2, int neg2,
const zn_mod_t mod);
/*
Same as zn_array_scalar_mul, but has a _redc_ flag. If the flag is set,
then REDC reduction is used (in which case the modulus must be odd),
otherwise ordinary reduction is used.
*/
#define _zn_array_scalar_mul \
ZNP__zn_array_scalar_mul
void
_zn_array_scalar_mul (ulong* res, const ulong* op, size_t n, ulong x,
int redc, const zn_mod_t mod);
/*
Behaves just like zn_array_scalar_mul, except it uses the obvious
optimisation if x == 1.
*/
#define zn_array_scalar_mul_or_copy \
ZNP_zn_array_scalar_mul_or_copy
void
zn_array_scalar_mul_or_copy (ulong* res, const ulong* op, size_t n,
ulong x, const zn_mod_t mod);
/* ============================================================================
stuff in nuss.c
============================================================================ */
/*
Performs negacyclic multiplication using Nussbaumer's algorithm.
vec1 and vec2 must be pre-initialised pmfvec_t's with the same
modulus and the same lgM and lgK, satisfying lgM + 1 >= lgK (i.e. there
are enough roots of unity). These are used for scratch space.
The convolution length is L = 2^lgL, where lgL = lgM + lgK - 1.
Inputs are op1[0, L) and op2[0, L), output is res[0, L). It's okay for res
to alias op1 or op2.
If op1 == op2, then a faster squaring version is used. In this case
vec2 is ignored.
The result comes out divided by a fudge factor, which can be recovered
via nuss_mul_fudge().
*/
#define nuss_mul \
ZNP_nuss_mul
void
nuss_mul (ulong* res, const ulong* op1, const ulong* op2,
pmfvec_t vec1, pmfvec_t vec2);
#define nuss_mul_fudge \
ZNP_nuss_mul_fudge
ulong
nuss_mul_fudge (unsigned lgL, int sqr, const zn_mod_t mod);
/*
Computes optimal lgK and lgM for given lgL, as described above for
nuss_mul().
*/
#define nuss_params \
ZNP_nuss_params
void
nuss_params (unsigned* lgK, unsigned* lgM, unsigned lgL);
/* ============================================================================
stuff from mul_fft.c
============================================================================ */
/*
Splits op[-k, n) into pieces of length M/2, where M = res->M, and where
the first k coefficients are assumed to be zero. The pieces are written to
the first ceil((n + k) / (M/2)) coefficients of res. The last fractional
piece is treated as if zero-padded up to length M/2. The second half of
each target pmf_t is zeroed out, and the bias fields are all set to b.
If x != 1, then all entries are multiplied by x mod m.
*/
#define fft_split \
ZNP_fft_split
void
fft_split (pmfvec_t res, const ulong* op, size_t n, size_t k, ulong x,
ulong b);
/*
Performs the substitution back from S[Z]/(Z^K - 1) to a polynomial in X,
i.e. mapping Y -> X, Z -> X^(M/2). It only looks at the first z coefficients
of op; it assumes the rest are zero. It writes exactly n coefficients of
output. If skip_first is set, it ignores the first M/2 coefficients of
output, and then writes the *next* M/2 coefficients of output.
NOTE: this routine is not threadsafe: it temporarily modifies the bias
field of the first coefficient of op.
*/
#define fft_combine \
ZNP_fft_combine
void
fft_combine (ulong* res, size_t n, const pmfvec_t op, ulong z,
int skip_first);
/*
Same as zn_array_mul(), but uses the Schonhage/Nussbaumer FFT algorithm.
Uses faster algorithm for squaring if inputs are identical buffers.
The modulus must be odd.
Output may overlap the inputs.
The output will come out divided by a fudge factor, which can be recovered
via zn_array_mul_fft_fudge().
If x != 1, the output is further multiplied by x.
*/
#define zn_array_mul_fft \
ZNP_zn_array_mul_fft
void
zn_array_mul_fft (ulong* res,
const ulong* op1, size_t n1,
const ulong* op2, size_t n2,
ulong x, const zn_mod_t mod);
#define zn_array_mul_fft_fudge \
ZNP_zn_array_mul_fft_fudge
ulong
zn_array_mul_fft_fudge (size_t n1, size_t n2, int sqr, const zn_mod_t mod);
/*
Computes the best lgK, lgM, m1, m2 such that polynomials of length n1 and
n2 may be multiplied with fourier transform parameters lgK and lgM, and
where the polynomials get split into m1 (resp. m2) chunks of length M/2.
More precisely, the outputs satisfy:
* lgM + 1 >= lgK (i.e. there are enough roots of unity)
* m1 + m2 - 1 <= K, where m1 = ceil(n1 / (M/2)) and m2 = ceil(n2 / (M/2))
(i.e. the transform has enough room for the answer)
* lgM >= 1
* lgM is minimal subject to the above conditions.
*/
#define mul_fft_params \
ZNP_mul_fft_params
void
mul_fft_params (unsigned* lgK, unsigned* lgM, ulong* m1, ulong* m2,
size_t n1, size_t n2);
/*
Same as zn_array_mulmid(), but uses the Schonhage/Nussbaumer FFT algorithm.
The modulus must be odd.
Output may overlap the inputs.
The output will come out divided by a fudge factor, which can be recovered
via zn_array_mulmid_fft_fudge().
If x != 1, the output is further multiplied by x.
*/
#define zn_array_mulmid_fft \
ZNP_zn_array_mulmid_fft
void
zn_array_mulmid_fft (ulong* res,
const ulong* op1, size_t n1,
const ulong* op2, size_t n2,
ulong x, const zn_mod_t mod);
#define zn_array_mulmid_fft_fudge \
ZNP_zn_array_mulmid_fft_fudge
ulong
zn_array_mulmid_fft_fudge (size_t n1, size_t n2, const zn_mod_t mod);
/*
Computes the best lgK, lgM, m1, m2, p such that the middle product of
polynomials of length n1 and n2 may be computed with fourier transform
parameters lgK and lgM, where the first polynomial is padded on the left by
p zeroes, and where the polynomials get split into m1 (resp. m2) chunks of
length M/2.
More precisely, the outputs satisfy (see mul_fft.c for further discussion):
* lgM >= 1
* lgM + 1 >= lgK (i.e. there are enough roots of unity)
* 1 <= p <= M/2 and n2 + p - 1 is divisible by M/2
* m1 = ceil((n1 + p) / (M/2))
* m2 = ceil(n2 / (M/2))
* m1 <= K
* lgM is minimal subject to the above conditions.
*/
#define mulmid_fft_params \
ZNP_mulmid_fft_params
void
mulmid_fft_params (unsigned* lgK, unsigned* lgM, ulong* m1, ulong* m2,
ulong* p, size_t n1, size_t n2);
/*
Stores precomputed information for performing an FFT-based middle product
where the first input array is invariant, and the length of the second
input array is invariant.
*/
#define zn_array_mulmid_fft_precomp1_struct \
ZNP_zn_array_mulmid_fft_precomp1_struct
struct zn_array_mulmid_fft_precomp1_struct
{
// these parameters are as described at the top of mul_fft.c.
size_t n1, n2;
ulong m1, m2, p;
// holds the transposed IFFT of the input array
pmfvec_t vec1;
};
#define zn_array_mulmid_fft_precomp1_t \
ZNP_zn_array_mulmid_fft_precomp1_t
typedef struct zn_array_mulmid_fft_precomp1_struct
zn_array_mulmid_fft_precomp1_t[1];
/*
Initialises res to perform middle product of op1[0, n1) by operands of
size n2.
If x != 1, the data is multiplied by x. Since middle products are linear,
this has the effect of multiplying the output of subsequent calls to
zn_array_mulmid_fft_precomp1_execute() by x.
*/
#define zn_array_mulmid_fft_precomp1_init \
ZNP_zn_array_mulmid_fft_precomp1_init
void
zn_array_mulmid_fft_precomp1_init (zn_array_mulmid_fft_precomp1_t res,
const ulong* op1, size_t n1, size_t n2,
ulong x, const zn_mod_t mod);
/*
Performs middle product of op1[0, n1) by op2[0, n2), stores result at
res[0, n1 - n2 + 1).
The output will come out divided by a fudge factor, which can be recovered
via zn_array_mulmid_fft_precomp1_fudge().
If x != 1, the output is further multiplied by x.
*/
#define zn_array_mulmid_fft_precomp1_execute \
ZNP_zn_array_mulmid_fft_precomp1_execute
void
zn_array_mulmid_fft_precomp1_execute
(ulong* res, const ulong* op2, ulong x,
const zn_array_mulmid_fft_precomp1_t precomp);
#define zn_array_mulmid_fft_precomp1_fudge \
ZNP_zn_array_mulmid_fft_precomp1_fudge
ulong
zn_array_mulmid_fft_precomp1_fudge (size_t n1, size_t n2, const zn_mod_t mod);
/*
Deallocates op.
*/
#define zn_array_mulmid_fft_precomp1_clear \
ZNP_zn_array_mulmid_fft_precomp1_clear
void
zn_array_mulmid_fft_precomp1_clear (zn_array_mulmid_fft_precomp1_t op);
/* ============================================================================
stuff from mpn_mulmid.c
============================================================================ */
/*
Let n1 >= n2 >= 1, and let
a = \sum_{i=0}^{n1-1} a_i B^i
b = \sum_{j=0}^{n2-1} b_j B^j
be integers with n1 and n2 limbs respectively. We define SMP(a, b), the
*simple* middle product of a and b, to be the integer
\sum_{0 <= i < n1, 0 <= j < n2, n2-1 <= i+j < n1} a_i b_j B^(i+j-(n2-1)).
In other words, it's as if we treat a and b as polynomials in Z[B] of
length n1 and n2 respectively, compute the polynomial middle product over
Z, and then propagate the high words and subsequent carries.
Note that SMP(a, b) is at most n1 - n2 + 3 limbs long (we assume throughout
that n1 is less than the maximum value stored in a limb).
*/
/*
Computes SMP(op1[0, n1), op2[0, n2)).
Stores result at res[0, n1 - n2 + 3).
*/
void
ZNP_mpn_smp (mp_limb_t* res,
const mp_limb_t* op1, size_t n1,
const mp_limb_t* op2, size_t n2);
/*
Same as mpn_smp(), but always uses basecase (quadratic-time) algorithm.
res[0, n1 - n2 + 3) must not overlap op1[0, n1) or op2[0, n2).
*/
void
ZNP_mpn_smp_basecase (mp_limb_t* res,
const mp_limb_t* op1, size_t n1,
const mp_limb_t* op2, size_t n2);
/*
Computes SMP(op1[0, 2*n - 1), op2[0, n)). Algorithm is selected depending
on size of n.
Stores result at res[0, n + 2). Output must not overlap inputs.
*/
void
ZNP_mpn_smp_n (mp_limb_t* res, const mp_limb_t* op1,
const mp_limb_t* op2, size_t n);
/*
Computes SMP(op1[0, 2*n - 1), op2[0, n)), using Karatsuba algorithm.
Must have n >= 2.
Stores result at res[0, n + 2). Output must not overlap inputs.
*/
void
ZNP_mpn_smp_kara (mp_limb_t* res, const mp_limb_t* op1, const mp_limb_t* op2,
size_t n);
/*
Computes the *true* middle product of op1[0, n1) and op2[0, n2).
More precisely, let P be the product op1 * op2. This function computes
P[n2 + 1, n1), and stores this at res[2, n1 - n2 + 1).
Must have n1 >= n2 >= 1.
The output buffer res *must* have room for n1 - n2 + 3 limbs, but the first
two limbs and the last two limbs of the output will be *garbage*. In
particular, only n1 - n2 - 1 limbs of useful output are produced. If
n1 <= n2 + 1, then no useful output is produced.
*/
void
ZNP_mpn_mulmid (mp_limb_t* res,
const mp_limb_t* op1, size_t n1,
const mp_limb_t* op2, size_t n2);
/*
Same as mpn_mulmid, but always just falls back on using mpn_mul.
*/
void
ZNP_mpn_mulmid_fallback (mp_limb_t* res,
const mp_limb_t* op1, size_t n1,
const mp_limb_t* op2, size_t n2);
/* ============================================================================
stuff from mulmid.c
============================================================================ */
/*
Same as zn_array_mulmid(), but always falls back on doing the full product
via _zn_array_mul().
If fastred is cleared, the output is the same as for zn_array_mulmid().
If fastred is set, the routine uses the fastest modular reduction strategy
available for the given parameters. The result will come out divided by a
fudge factor, which can be recovered via
_zn_array_mulmid_fallback_fudge().
*/
#define zn_array_mulmid_fallback \
ZNP_zn_array_mulmid_fallback
void
zn_array_mulmid_fallback (ulong* res,
const ulong* op1, size_t n1,
const ulong* op2, size_t n2,
int fastred, const zn_mod_t mod);
#define zn_array_mulmid_fallback_fudge \
ZNP_zn_array_mulmid_fallback_fudge
ulong
zn_array_mulmid_fallback_fudge (size_t n1, size_t n2, const zn_mod_t mod);
/*
Identical to zn_array_mulmid(), except for the fastred flag.
If fastred is cleared, the output is the same as for zn_array_mulmid().
If fastred is set, the routine uses the fastest modular reduction strategy
available for the given parameters. The result will come out divided by a
fudge factor, which can be recovered via _zn_array_mulmid_fudge().
*/
#define _zn_array_mulmid \
ZNP__zn_array_mulmid
void
_zn_array_mulmid (ulong* res,
const ulong* op1, size_t n1,
const ulong* op2, size_t n2,
int fastred, const zn_mod_t mod);
#define _zn_array_mulmid_fudge \
ZNP__zn_array_mulmid_fudge
ulong
_zn_array_mulmid_fudge (size_t n1, size_t n2, const zn_mod_t mod);
/* ============================================================================
other random stuff
============================================================================ */
/*
Compute 2^k mod m.
Modulus must be odd.
Must have -ULONG_BITS < k < ULONG_BITS.
*/
#define zn_mod_pow2 \
ZNP_zn_mod_pow2
ulong
zn_mod_pow2 (int k, const zn_mod_t mod);
/*
Constants describing algorithms for precomputed middle products
*/
#define ZNP_MULMID_ALGO_FALLBACK 0
#define ZNP_MULMID_ALGO_KS 1
#define ZNP_MULMID_ALGO_FFT 2
#ifdef __cplusplus
}
#endif
#endif
// end of file ****************************************************************
|