File: mul_ks-test.c

package info (click to toggle)
libzn-poly 0.9.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 904 kB
  • sloc: ansic: 10,736; python: 124; makefile: 12; sh: 6
file content (432 lines) | stat: -rw-r--r-- 11,222 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/*
   mul_ks-test.c:  test code for functions in mul_ks.c
   
   Copyright (C) 2007, 2008, David Harvey
   
   This file is part of the zn_poly library (version 0.9).
   
   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 2 of the License, or
   (at your option) version 3 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.

*/

#include "support.h"
#include "zn_poly_internal.h"


/*
   Tests zn_array_mul_KSk, for given lengths, reduction algorithm, modulus.
   1 <= k <= 4 indicates which KS variant to call.
   sqr == 1 to test squaring (n2 is ignored).
   Returns 1 on success.
*/
int
testcase_zn_array_mul_KS (int k, size_t n1, size_t n2, int sqr, int redc,
                          const zn_mod_t mod)
{
   // disallow REDC if modulus is even
   if (!(mod->m & 1))
      redc = 0;
      
   if (sqr)
      n2 = n1;

   ulong* buf1 = (ulong*) malloc (sizeof(ulong) * n1);
   ulong* buf2 = sqr ? buf1 : (ulong*) malloc (sizeof(ulong) * n2);
   ulong* ref = (ulong*) malloc (sizeof(ulong) * (n1 + n2 - 1));
   ulong* res = (ulong*) malloc (sizeof(ulong) * (n1 + n2 - 1));
   
   // generate random polys
   size_t i;
   for (i = 0; i < n1; i++)
      buf1[i] = random_ulong (mod->m);
   if (!sqr)
      for (i = 0; i < n2; i++)
         buf2[i] = random_ulong (mod->m);
      
   // compare target implementation against reference implementation
   ref_zn_array_mul (ref, buf1, n1, buf2, n2, mod);

   switch (k)
   {
      case 1: zn_array_mul_KS1 (res, buf1, n1, buf2, n2, redc, mod); break;
      case 2: zn_array_mul_KS2 (res, buf1, n1, buf2, n2, redc, mod); break;
      case 3: zn_array_mul_KS3 (res, buf1, n1, buf2, n2, redc, mod); break;
      case 4: zn_array_mul_KS4 (res, buf1, n1, buf2, n2, redc, mod); break;
      default:
         printf ("oops!\n"); abort ();
   }

   if (redc)
      // correct for REDC reduction
      ref_zn_array_scalar_mul (res, res, n1 + n2 - 1, mod->m - mod->B, mod);

   int success = !zn_array_cmp (ref, res, n1 + n2 - 1);
   
   free (res);
   free (ref);
   if (!sqr)
      free (buf2);
   free (buf1);
   
   return success;
}


/*
   tests zn_array_mul_KSk() on a range of input cases, where 1 <= k <= 4
*/
int
test_zn_array_mul_KSk (unsigned k, int quick)
{
   int success = 1;
   int b, trial, redc;
   size_t n1, n2, t1, t2;
   zn_mod_t mod;

   // first try a dense range of "small" problems

   for (b = 2; b <= ULONG_BITS && success; b++)
   for (n2 = 1; n2 <= 30 && success; n2 += (quick ? 5 : 1))
   for (n1 = n2; n1 <= 30 && success; n1 += (quick ? 5 : 1))
   for (redc = 0; redc < 2 && success; redc++)
   for (trial = 0; trial < (quick ? 1 : 10) && success; trial++)
   {
      zn_mod_init (mod, random_modulus (b, 0));
      success = success && testcase_zn_array_mul_KS (k, n1, n2, 0, redc, mod);
      zn_mod_clear (mod);
   }
   
   // now try some random larger problems

   for (b = 2; b <= ULONG_BITS && success; b++)
   for (redc = 0; redc < 2 && success; redc++)
   for (trial = 0; trial < (quick ? 3 : 200) && success; trial++)
   {
      size_t t1 = random_ulong (quick ? 250 : 1000) + 1;
      size_t t2 = random_ulong (quick ? 250 : 1000) + 1;
      n1 = ZNP_MAX (t1, t2);
      n2 = ZNP_MIN (t1, t2);
      
      zn_mod_init (mod, random_modulus (b, 0));
      success = success && testcase_zn_array_mul_KS (k, n1, n2, 0, redc, mod);
      zn_mod_clear (mod);
   }

   return success;
}


int test_zn_array_mul_KS1 (int quick)
{
   return test_zn_array_mul_KSk (1, quick);
}

int test_zn_array_mul_KS2 (int quick)
{
   return test_zn_array_mul_KSk (2, quick);
}

int test_zn_array_mul_KS3 (int quick)
{
   return test_zn_array_mul_KSk (3, quick);
}

int test_zn_array_mul_KS4 (int quick)
{
   return test_zn_array_mul_KSk (4, quick);
}




/*
   tests zn_array_mul_KSk() for squaring on a range of input cases,
   where 1 <= k <= 4
*/
int
test_zn_array_sqr_KSk (unsigned k, int quick)
{
   int success = 1;
   int b, trial, redc;
   size_t n;
   zn_mod_t mod;

   // first try a dense range of "small" problems

   for (b = 2; b <= ULONG_BITS && success; b++)
   for (n = 1; n <= 30 && success; n += (quick ? 5 : 1))
   for (redc = 0; redc < 2 && success; redc++)
   for (trial = 0; trial < (quick ? 1 : 10) && success; trial++)
   {
      zn_mod_init (mod, random_modulus (b, 0));
      success = success && testcase_zn_array_mul_KS (k, n, n, 1, redc, mod);
      zn_mod_clear(mod);
   }
   
   // now try some random larger problems

   for (b = 2; b <= ULONG_BITS && success; b++)
   for (redc = 0; redc < 2 && success; redc++)
   for (trial = 0; trial < (quick ? 3 : 200) && success; trial++)
   {
      n = random_ulong (quick ? 250 : 1000) + 1;
      
      zn_mod_init (mod, random_modulus (b, 0));
      success = success && testcase_zn_array_mul_KS (k, n, n, 1, redc, mod);
      zn_mod_clear (mod);
   }

   return success;
}


int test_zn_array_sqr_KS1 (int quick)
{
   return test_zn_array_sqr_KSk (1, quick);
}

int test_zn_array_sqr_KS2 (int quick)
{
   return test_zn_array_sqr_KSk (2, quick);
}

int test_zn_array_sqr_KS3 (int quick)
{
   return test_zn_array_sqr_KSk (3, quick);
}

int test_zn_array_sqr_KS4 (int quick)
{
   return test_zn_array_sqr_KSk (4, quick);
}



/*
   Tests zn_array_recover_reduce() for given n, b, reduction algorithm
   and modulus.
   
   Doesn't test the s parameter.
   
   Note: running time is quadratic in n, so don't make it too big.
*/
int
testcase_zn_array_recover_reduce (size_t n, unsigned b, int redc,
                                  const zn_mod_t mod)
{
   // disallow REDC if modulus is even
   if (!(mod->m & 1))
      redc = 0;

   ZNP_ASSERT (b >= 1  &&  2 * b <= 3 * ULONG_BITS);

   mpz_t* a;
   size_t i;

   a = (mpz_t*) malloc (sizeof (mpz_t) * n);
   for (i = 0; i < n; i++)
      mpz_init (a[i]);

   // c = 2^b - 1
   mpz_t c;
   mpz_init (c);
   mpz_set_ui (c, 1);
   mpz_mul_2exp (c, c, b);
   mpz_sub_ui (c, c, 1);
   
   mpz_t hi, lo;
   mpz_init (hi);
   mpz_init (lo);
   
   mpz_t temp;
   mpz_init (temp);
   
   // a "small" integer, no more than c
   mpz_t small;
   mpz_init (small);
   mpz_set_ui (small, (b >= 2) ? 3 : 1);
   ZNP_ASSERT (mpz_cmp (small, c) <= 0);

   mpz_t sum1, sum2;
   mpz_init (sum1);
   mpz_init (sum2);

   // make up a list of a[i]'s
   for (i = 0; i < n; i++)
   {
      // make up low digit
      switch (random_ulong (3))
      {
         case 0:
            // some uniform random digit
            mpz_urandomb (lo, randstate, b);
            break;
            
         case 1:
            // a value close to zero
            mpz_urandomm (lo, randstate, small);
            break;
            
         case 2:
            // a value close to the maximum
            // (anything up to and including 2^b - 1)
            mpz_urandomm (lo, randstate, small);
            mpz_sub (lo, c, lo);
            break;
      }
      
      // make up high digit
      switch (random_ulong (3))
      {
         case 0:
            // some uniform random digit
            mpz_urandomm (hi, randstate, c);
            break;
            
         case 1:
            // a value close to zero
            mpz_urandomm (hi, randstate, small);
            break;
            
         case 2:
            // a value close to the maximum
            // (anything up to but NOT including 2^b - 1)
            mpz_urandomm (hi, randstate, small);
            mpz_sub (hi, c, hi);
            mpz_sub_ui (hi, hi, 1);
            break;
      }
      
      // put a[i] = hi*B + lo
      mpz_mul_2exp (a[i], hi, b);
      mpz_add (a[i], a[i], lo);
   }

   // construct the sums in forward and reverse directions
   // i.e. sum1 = a[0] + a[1]*B + ... + a[n-1]*B^(n-1)
   //      sum2 = a[n-1] + a[n-2]*B + ... + a[0]*B^(n-1).
   for (i = 0; i < n; i++)
   {
      mpz_mul_2exp (sum1, sum1, b);
      mpz_add (sum1, sum1, a[n - 1 - i]);
      mpz_mul_2exp (sum2, sum2, b);
      mpz_add (sum2, sum2, a[i]);
   }

   // decompose both sums into sequence of (n+1) base-B digits
   unsigned w = CEIL_DIV (b, ULONG_BITS);
   ZNP_ASSERT (w <= 2);
   ulong* d1 = (ulong*) malloc (sizeof (ulong) * w * (n + 1));
   ulong* d2 = (ulong*) malloc (sizeof (ulong) * w * (n + 1));

   if (w == 1)
   {
      for (i = 0; i <= n; i++)
      {
         mpz_tdiv_r_2exp (temp, sum1, b);
         d1[i] = mpz_get_ui (temp);
         mpz_tdiv_q_2exp (sum1, sum1, b);

         mpz_tdiv_r_2exp (temp, sum2, b);
         d2[i] = mpz_get_ui (temp);
         mpz_tdiv_q_2exp (sum2, sum2, b);
      }
   }
   else
   {
      for (i = 0; i <= n; i++)
      {
         mpz_tdiv_r_2exp (temp, sum1, ULONG_BITS);
         d1[2 * i] = mpz_get_ui (temp);
         mpz_tdiv_q_2exp (sum1, sum1, ULONG_BITS);
         mpz_tdiv_r_2exp (temp, sum1, b - ULONG_BITS);
         d1[2 * i + 1] = mpz_get_ui (temp);
         mpz_tdiv_q_2exp (sum1, sum1, b - ULONG_BITS);

         mpz_tdiv_r_2exp (temp, sum2, ULONG_BITS);
         d2[2 * i] = mpz_get_ui (temp);
         mpz_tdiv_q_2exp (sum2, sum2, ULONG_BITS);
         mpz_tdiv_r_2exp (temp, sum2, b - ULONG_BITS);
         d2[2 * i + 1] = mpz_get_ui (temp);
         mpz_tdiv_q_2exp (sum2, sum2, b - ULONG_BITS);
      }
   }
   
   // shouldn't be any bits left
   ZNP_ASSERT (mpz_cmp_ui (sum1, 0) == 0);
   ZNP_ASSERT (mpz_cmp_ui (sum2, 0) == 0);

   // see if zn_array_recover_reduce() returns the original inputs (mod m)
   ulong* res = (ulong*) malloc (sizeof (ulong) * n);
   zn_array_recover_reduce (res, 1, d1, d2, n, b, redc, mod);

   int success = 1;
   for (i = 0; i < n; i++)
   {
      if (redc)
         // correct for REDC reduction
         mpz_mul_ui (temp, a[i], mod->m - mod->B);
      else
         mpz_set (temp, a[i]);

      mpz_mod_ui (temp, a[i], mod->m);
      success = success && (mpz_get_ui (temp) == res[i]);
   }

   // clean up
   free (res);
   free (d2);
   free (d1);
   mpz_clear (temp);
   mpz_clear (sum2);
   mpz_clear (sum1);
   mpz_clear (lo);
   mpz_clear (hi);
   mpz_clear (small);
   mpz_clear (c);
   for (i = 0; i < n; i++)
      mpz_clear (a[i]);
   free (a);
   
   return 1;
}


/*
   Tests zn_array_recover_reduce() on a range of small problems.
*/
int
test_zn_array_recover_reduce (int quick)
{
   int success = 1;
   int b, trial, redc;
   size_t n;
   zn_mod_t mod;

   for (b = 1; 2 * b <= 3 * ULONG_BITS && success; b++)
   for (n = 1; n <= 15 && success; n++)
   for (redc = 0; redc < 2 && success; redc++)
   for (trial = 0; trial < (quick ? 10 : 200) && success; trial++)
   {
      zn_mod_init (mod, random_modulus (random_ulong (ULONG_BITS - 1) + 2, 0));
      success = success && testcase_zn_array_recover_reduce (n, b, redc, mod);
      zn_mod_clear (mod);
   }
   
   return success;
}



// end of file ****************************************************************