1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
/*
pack-test.c: test code for functions in pack.c
Copyright (C) 2007, 2008, David Harvey
This file is part of the zn_poly library (version 0.9).
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) version 3 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "support.h"
#include "zn_poly_internal.h"
/*
Helper function for ref_zn_array_pack().
Sets x = 2^k * (op[0] + op[1]*2^b + ... + op[n-1]*2^((n-1)*b)).
Running time is soft-linear in output length.
*/
void
ref_zn_array_pack_helper (mpz_t x, const ulong* op, size_t n, unsigned b,
unsigned k)
{
ZNP_ASSERT (n >= 1);
if (n == 1)
{
// base case
mpz_set_ui (x, op[0]);
mpz_mul_2exp (x, x, k);
}
else
{
// recursively split into top and bottom halves
mpz_t y;
mpz_init (y);
ref_zn_array_pack_helper (x, op, n / 2, b, k);
ref_zn_array_pack_helper (y, op + n / 2, n - n / 2, b, 0);
mpz_mul_2exp (y, y, (n / 2) * b + k);
mpz_add (x, x, y);
mpz_clear (y);
}
}
/*
Reference implementation of zn_array_pack().
(doesn't take into account the s or r parameters)
*/
void
ref_zn_array_pack (mp_limb_t* res, const ulong* op, size_t n, unsigned b,
unsigned k)
{
mpz_t x;
mpz_init (x);
ref_zn_array_pack_helper (x, op, n, b, k);
mpz_to_mpn (res, CEIL_DIV (n * b + k, GMP_NUMB_BITS), x);
mpz_clear (x);
}
/*
Helper function for ref_zn_array_unpack().
Inverse operation of ref_zn_array_pack_helper(); each output coefficient
occupies ceil(b / ULONG_BITS) ulongs.
Running time is soft-linear in output length.
*/
void
ref_zn_array_unpack_helper (ulong* res, const mpz_t op, size_t n, unsigned b,
unsigned k)
{
ZNP_ASSERT (n >= 1);
ZNP_ASSERT (mpz_sizeinbase (op, 2) <= n * b + k);
unsigned w = CEIL_DIV (b, ULONG_BITS);
mpz_t y;
mpz_init (y);
if (n == 1)
{
// base case
unsigned i;
mpz_tdiv_q_2exp (y, op, k);
for (i = 0; i < w; i++)
{
res[i] = mpz_get_ui (y);
mpz_tdiv_q_2exp (y, y, ULONG_BITS);
}
}
else
{
// recursively split into top and bottom halves
mpz_tdiv_q_2exp (y, op, (n / 2) * b + k);
ref_zn_array_unpack_helper (res + w * (n / 2), y, n - n / 2, b, 0);
mpz_tdiv_r_2exp (y, op, (n / 2) * b + k);
ref_zn_array_unpack_helper (res, y, n / 2, b, k);
}
mpz_clear (y);
}
/*
Reference implementation of zn_array_unpack().
*/
void
ref_zn_array_unpack (ulong* res, const mp_limb_t* op, size_t n, unsigned b,
unsigned k)
{
mpz_t x;
mpz_init (x);
mpn_to_mpz (x, op, CEIL_DIV (n * b + k, GMP_NUMB_BITS));
ref_zn_array_unpack_helper (res, x, n, b, k);
mpz_clear (x);
}
/*
tests zn_array_pack() once for given n, b, k
*/
int
testcase_zn_array_pack (size_t n, unsigned b, unsigned k)
{
ZNP_ASSERT (b >= 1);
ZNP_ASSERT (n >= 1);
int success = 1;
ulong* in = (ulong*) malloc (sizeof (ulong) * n);
size_t size = CEIL_DIV (n * b + k, GMP_NUMB_BITS);
mp_limb_t* res = (mp_limb_t*) malloc (sizeof (mp_limb_t) * (size + 2));
mp_limb_t* ref = (mp_limb_t*) malloc (sizeof (mp_limb_t) * (size + 2));
// sentries to check buffer overflow
res[0] = res[size + 1] = ref[0] = ref[size + 1] = 0x1234;
// generate random data: at most b bits per input coefficient, possibly less
unsigned rand_bits = (b >= ULONG_BITS) ? ULONG_BITS : b;
rand_bits = random_ulong (rand_bits) + 1;
ulong max = (rand_bits == ULONG_BITS)
? ((ulong)(-1)) : ((1UL << rand_bits) - 1);
size_t i;
for (i = 0; i < n; i++)
in[i] = random_ulong (max);
// run target and reference implementation
zn_array_pack (res + 1, in, n, 1, b, k, 0);
ref_zn_array_pack (ref + 1, in, n, b, k);
// check sentries
success = success && (res[0] == 0x1234);
success = success && (ref[0] == 0x1234);
success = success && (res[size + 1] == 0x1234);
success = success && (ref[size + 1] == 0x1234);
// check correct result
success = success && (mpn_cmp (res + 1, ref + 1, size) == 0);
free (ref);
free (res);
free (in);
return success;
}
/*
tests zn_array_pack() on a range of input cases
*/
int
test_zn_array_pack (int quick)
{
int success = 1;
unsigned b, k;
size_t n;
for (b = 1; b < 3 * ULONG_BITS && success; b++)
for (n = 1; n < (quick ? 100 : 200) && success;
n += (quick ? (n < 5 ? 1 : 13) : 1))
for (k = 0; k < 160; k += 20)
success = success && testcase_zn_array_pack (n, b, k);
return success;
}
/*
tests zn_array_unpack() once for given n, b, k
*/
int
testcase_zn_array_unpack (size_t n, unsigned b, unsigned k)
{
size_t buf_size = CEIL_DIV (n * b + k, GMP_NUMB_BITS);
size_t size = n * CEIL_DIV (b, ULONG_BITS);
mp_limb_t* buf = (mp_limb_t*) malloc (sizeof (mp_limb_t) * buf_size);
ulong* res = (ulong*) malloc (sizeof (ulong) * (size + 2));
ulong* ref = (ulong*) malloc (sizeof (ulong) * (size + 2));
// sentries to check buffer overflow
res[0] = res[size + 1] = ref[0] = ref[size + 1] = 0x1234;
// generate random data
mpz_t x;
mpz_init (x);
mpz_urandomb (x, randstate, n * b);
mpz_mul_2exp (x, x, k);
mpz_to_mpn (buf, buf_size, x);
mpz_clear (x);
// run target and reference implementation
zn_array_unpack (res + 1, buf, n, b, k);
ref_zn_array_unpack (ref + 1, buf, n, b, k);
int success = 1;
// check sentries
success = success && (res[0] == 0x1234);
success = success && (ref[0] == 0x1234);
success = success && (res[size + 1] == 0x1234);
success = success && (ref[size + 1] == 0x1234);
// check correct result
success = success && (zn_array_cmp (res + 1, ref + 1, size) == 0);
free (ref);
free (res);
free (buf);
return success;
}
/*
tests zn_array_unpack() on a range of input cases
*/
int
test_zn_array_unpack (int quick)
{
int success = 1;
unsigned b, k;
size_t n;
for (b = 1; b < 3 * ULONG_BITS && success; b++)
for (n = 1; n < (quick ? 100 : 200) && success;
n += (quick ? (n < 5 ? 1 : 13) : 1))
for (k = 0; k < 160; k += 19)
success = success && testcase_zn_array_unpack (n, b, k);
return success;
}
// end of file ****************************************************************
|